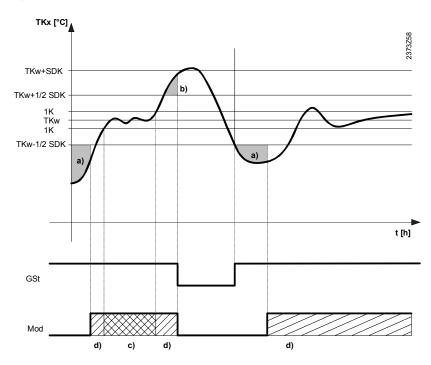


CONTROLLERS CLIMA TOP (RVS63) CLIMA COMFORT (RVS43)

User and OEM Manual

RVS43.. RVS63.. AVS75.. AVS37.. QAA75.. QAA55..

Connect	connections:				
	Use	Space	Connector type		
L1	Phase burner	Р	AGP8S.07A/109		
÷	Protective earth				
Ν	Neutral conductor				
T1	Phase 1st burner stage				
T2	1st burner stage on				
S3	Input burner fault				
4	Input 1st burner stage hours run				
EX2	Input 1st burner stage hours run	Z	AGP8S.04C/109		
FX4	Phase 2nd burner stage				
(T6)					
QX4	2nd burner stage off				
(T7)					
QX4	Burner 2nd stage on				
(T8)					


Modulating 3-position Modulating UX

Boiler temperature control

The functioning and activation and deactivation of the first stage corresponds to that of 2-stge burner operation. Release of modulation is analogous to the release of burner stage 2.

Deactivation or locking of modulation takes place at the same time the change from the first burner stage to cycling occurs.

Maximum limitation of the boiler temperature, minimum burner running time, cascade operation and DHW separation circuit are handled analogous to 2-stage burner operation.

Release integral modulation

a) Release integral modulation (release integral second stage "2-stage burner")

b) Reset integral modulation (reset integral second stage "2-stage burner")

c) Neutral zone

- d) On / off pulses
- GSt Basic stage

Mod Modulating stage

- SDK Switching differential boiler
- TKw Boiler temperature setpoint

Burner control

• 3-position control and modulating UX

The actuator is controlled in PID mode. By setting the proportional band (Xp), the integral action time (Tn) and the derivative action time (Tv), the controller can be matched to the type of plant (controlled system). Also, the actuator running time is to be set.

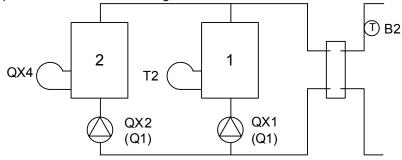
Neutral zone

For control operation, a neutral zone is used which is at +/- 1K about the current boiler temperature setpoint. If the boiler temperature stays in the neutral zone for more than 16 seconds, the neutral zone becomes active and positioning pulses are no longer delivered. As soon as the boiler temperature leaves the neutral zone again, control is resumed. If the boiler temperature does not stay long enough in the neutral zone, positioning pulses will also be delivered within the neutral zone.

	Use	Space	Connector type
L1	Phase burner	Р	AGP8S.07A/109
Ť	Protective earth		
Ν	Neutral conductor		
T1	Phase release modulating burner		
T2	Release modulating burner		
S3	Input burner fault		
4	Input burner hours run		
QX1	Air damper modulating burner closing	U	AGP8S.03C/109
FX4	Phase air damper modulating burner	Z	AGP8S.04C/109
(T6)	opening		
QX4	Air damper modulating burner opening		
(T8)			

Connections modulating UX:

	Use	Space	Connector type
L1	Phase burner	Р	AGP8S.07A/109
÷	Protective earth		
Ν	Neutral conductor		
T1	Phase release modulating burner		
T2	Release modulating burner		
S3	Input burner fault		
4	Input burner hours run		
UX	DC 010 V modulation output	n	AGP4S.02F/109
М	Ground		


Without boiler sensor

The boiler is released as soon as a valid boiler temperature setpoint is active.

Connections:

	Use	Space	Connector type
L1	Phase burner	Р	AGP8S.07A/109
÷	Protective earth		
Ν	Neutral conductor		
T1	Phase boiler release		
T2	boiler release		
S3	Input burner fault		
4	Input 1st burner stage hours run		

The 2x1 cascade is a special configuration of the basic unit, where the 2-stage boiler is operated as 2 cascaded 1-stage boilers.

Due to the temperature differential between boiler temperature setpoint and boiler temperature sensor B2 (common, mandatory cascade flow temperature sensor), switching on / off of the lag boiler (release and reset integral) takes place according to the control of a 2-stage burner. The same parameters are used.

If a boiler pump is required, QX1 and QX2 (operating lines 5890 and 5891) must be appropriately set.

A common boiler pump can be operated at any other multifunctional relay output QX parameterized as boiler pump Q1. The boiler pump of the lead boiler is always mapped on these outputs.

With the configuration of the 2x1 cascade (parameter "Type of heat source"), the following outputs and functions will be ready used or assigned.

	Use	Space	Connector type
L1	Phase burner	Р	AGP8S.07A/109
÷	Protective earth		
Ν	Neutral conductor		
T1	Phase burner 1		
T2	Burner 1 on		
S3	Input burner fault		
4	Input burner 1 hours run		
EX2	Input burner 2 hours run	Z	AGP8S.04C/109
FX4	Phase burner 2		
(T6)			
QX4	Burner 2 OFF		
(T7)			
QX4	Burner 2 ON		
(T8)			

Solar

 Line no.
 Operating line

 5840
 Solar controlling element

 Charging pump
 Diverting valve

 5841
 External solar exchanger

 Jointly
 DHW storage tank

 buffer storage tank
 buffer storage tank

Solar controlling element

In place of a collector pump and diverting valves for integrating the storage tanks, the solar plant can also be operated with charging pumps.

When using a diverting valve, it is always only one heat exchanger that can be used at a time. Only alternative operation is possible.

When using a charging pump, all heat exchangers can be used at the same time. Either parallel or alternative operation is possible.

External solar exchanger In the case of solar plants with 2 storage tanks, it must be selected whether the external heat exchanger shall be used jointly for DHW and as a buffer storage tank, or exclusively for one of the two.

Output relay QX

Line no.	Operating line
5890	Relay output QX1,
5891	2,3,4
5892	None
5894	Circulating pump Q4
5054	El imm heater DHW K6
	Collector pump Q5
	H1 pump Q15
	Boiler pump Q1
	Bypass pump Q12
	Alarm output K10
	2nd pump speed HC1 Q21
	2nd pump speed HC2 Q22
	2nd pump speed HCP Q23
	Heat circ pump HCP Q20
	H2 pump Q18
	System pump Q14
	Heat gen shutoff valve Y4
	Solid fuel boiler pump Q10
	Time program 5 K13
	Buffer return valve Y15
	Solar pump ext exch K9
	Solar ctrl elem buffer K8
	Solar ctrl elem swi pool K18 Collector pump 2 Q16
	H3 pump Q19
	Flue gas relay K17
	Assisted firing fan K30
	Cascade pump Q25
	St tank transfer pump Q11
	DHW mixing pump Q35
	DHW interm circ pump Q33
	Heat request K27
	Refrig demand K28
	Dehumidifier K29
	Diverting valve, cooling Y21

Depending on the selection made, setting the relay outputs assigns appropriate extra functions to the basic diagrams. For detailed information, refer to the section "Application diagrams".

i

Multifunctional output QX4 can be used only if the operating line "Source type" (operating line 5770) is set to "1-stage", "Modulating UX" or "Without boiler sensor".

DHW circulating pump Q4

The connected pump serves as a DHW circulating pump. Operation of the pump can be scheduled as required on operating page "DHW", operating line "Release circulating pump".

DHW electric immersion heater K6

Using the connected electric immersion heater, the DHW can be heated up according to operating page "DHW storage tank", operating line "electric immersion heater".

i

The electric immersion heater must be fitted with a safety limit thermostat!

Operating line 5060 of the electric immersion heater's operating mode must be appropriately set.

Collector pump Q5

When using a solar collector, a circulating pump for the collector circuit is required.

Pump H1 Q15

Pump H1 can be used for an additional consumer. Together with an external request for heat at input H1, it is possible to operate an air heater or similar.

Boiler pump Q1

The connected pump is used for circulating the boiler water.

Bypass pump Q12

The connected pump serves as a boiler bypass pump for maintaining the boiler return temperature.

Alarm output K10

The alarm relay signals faults, should they occur.

Switching on takes place with a delay of two minutes.

When the fault is corrected, that is, when the fault status is no longer present, the relay will be deenergized with no delay.

If the fault cannot immediately be corrected, it is still possible to reset the alarm relay. This is made on operating page "Faults".

2nd pump speed

This function facilitates the control of a 2-speed heating circuit pump, allowing the pump's capacity to be lowered in reduced mode (e.g. during night setback). In that case, multifunctional relay QX is used to activate the 2nd pump speed in the following manner:

1st speed2nd speedoutput Q2/Q6/Q20Output Q21/Q22/Q23		Pump state
Off	Off	Off
On	Off	Part load
On	On	Full load

Heating circuit pump HCP Q20

Pump heating circuit P will be activated.

• Time program

For heating circuit P, only time program 3/HCP is available. For more detailed information, refer to section "Time program".

H2 pump Q18

Pump H2 can be used for an additional consumer. Together with an external demand for heat at input H2, it is possible to serve an air heater or similar.

System pump Q14

The connected pump can be used as a system pump for supplying heat to other consumers.

The system pump is put into operation as soon as one of consumers calls for heat. If there is no demand for heat, the pump will be deactivated followed by overrun.

Heat gen shutoff valve Y4

If the buffer storage tank holds a sufficient amount of heat, the consumers can draw their heat from it, and the heat sources need not be put into operation. Automatic heat generation lock locks the heat sources and hydraulically disconnects them from the rest of the plant with the help of heat source shutoff valve Y4. This means that the heat consumers draw their energy from the buffer storage tank and wrong circulation through the heat sources will be eliminated.

Solid fuel boiler pump Q10

For the connection of a solid fuel boiler, a circulating pump for the boiler circuit is required.

Time program 5 K13

The relay is controlled according to the settings made in time program 5.

Buffer return valve Y15

This valve must be configured for return temperature increase / decrease or partial charging of the buffer storage tank.

Solar pump ext exch K9

For the external heat exchanger, solar pump "Ext heat exchanger K9" must be set at the multifunctional relay output (QX).

If both a DHW and a buffer storage tank are available, operating line 5841 "External solar heat exchanger" must also be set.

Solar ctrl elem buffer K8

If several heat exchangers are used, the buffer storage tank must be set at the respective relay output and, in addition, the type of solar controlling element must be defined on operating line 5840).

Solar ctrl elem swi pool K18

If several heat exchangers are used, the swimming pool must be set at the respective relay output and, in addition, the type of solar controlling element must be defined on operating line 5840).

Collector pump 2 Q16

When using a second solar collector, a separate circulating pump for this collector circuit is required.

H3 pump Q19

Pump H2 can be used for an additional consumer. Together with an external demand for heat at input H2, it is possible to serve an air heater or similar.

Flue gas relay K17

If the flue gas temperature exceeds the level set on operating line 7053 "Flue gas temperature limit", relay K17 closes.

Assisted firing fan K30

This setting has no function.

Cascade pump Q25

Common boiler pump for all boilers in a cascade.

St tank transfer pump Q11

If the temperature level of the buffer storage tank is high enough, the DHW storage tank can be charged by the buffer. This transfer can be made by means of transfer pump Q11.

DHW mixing pump Q35

Separate pump for storage tank circulation during the time the legionella function is active.

DHW interm circ pump Q33

Charging pump with DHW storage tank using an external heat exchanger.

Heat request K27

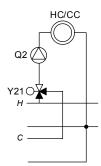
As soon as there is demand for heat, output K27 is activated.

Refrig demand K28

As soon as there is refrigeration demand, output K28 is activated.

In the case of the device with address 1, a refrigeration demand from the system can activate output K28. For this purpose, operating line 6627 "Refrig demand K28" on the operating page "LPB system" must be set to "Centrally".

Dehumidifier K29


An external dehumidifier can be enabled if the indoor air humidity rises. In this case, a humidity sensor must be connected to the H... input.

The function of the dehumidifier depends on the cooling functions.

The operation of the dehumidifier is not affected by operating modes, holiday programs, presence buttons etc.

Diverting valve, cooling Y21

With a common distribution circuit for heating and cooling, the inputs/outputs are always on the mixing valve group on the basic unit. For a 4-pipe system, diverting valve Y21 is also required.

Example: Draw off via 4-pipe system

Input sensor BX

Line no.	Operating line
5930,5931,	Sensor input BX1, 2, 3, 4
5932, 5933	None
,	DHW sensor B31
	Collector sensor B6
	Return sensor B7
	DHW circulation sensor B39
	Buffer storage tank sensor B4
	Buffer storage tank sensor B41
	Flue gas temp sensor B8
	Common flow sensor B10
	Solid fuel boiler sensor B22
	DHW charging sensor B36
	Buffer storage tank sensor B42
	Common return sensor B73
	Cascade return sensor B70
	Swimming pool sensor B13
	Collector sensor 2 B61
	Solar flow sensor B63
	Solar return sensor B64

Depending on the selection made, setting of the sensor input assigns appropriate extra functions to the basic diagrams. For detailed information, refer to section "Application diagrams".

Input H1 for RVS43..

The following settings for input H1 apply specifically to RVS43..

Line no.	Operating line		
5950	Function of input H1		
	Optg mode changeover		
	HCs+DHW		
	Optg mode changeover HCs		
	Optg mode changeover HC1		
	Optg mode changeover HC2		
	Optg mode changeover HCP		
	Heat generation lock		
	Error / alarm message		
	Min flow temp setpoint		
	Excess heat discharge		
	Release swimming pool		
	Dew point monitor		
	Flow setpt increase hygro		
	Refrigeration demand		
	Heat request 10V		
	Refrig demand 10V		
	Pressure measurement 10V		
	Relative room humidity 10V		
5054	Room temperature 10V		
5951	Contact type input H1		
	NC N/O		
5952	Function value, contact type H1		
5953	Voltage value 1, H1		
5954	Function value 1, H1		
5955	Voltage value 2, H1		
5956	Function value 2, H1		

Function of input H1

Input H1 for RVS43..

Changeover of operating mode

Heating circuit

The operating modes of the heating circuits are switched to Protection mode via the H... terminals (e.g. using a remote telephone switch).

• DHW

114/196

DHW heating is locked only when using setting 1: HCs+DHW. **Heat generation lock**

The heat source is be locked via the H... terminals.

All temperature requests made by the heating circuits and by DHW will be ignored. Frost protection for the boiler will be maintained.

The chimney sweep function can be activated although the heat generation lock is switched on.

Error / alarm message

Input H1 generates a controller-internal error message.

If the "Alarm output" (relay outputs QX2-4, operating lines 5891 – 5894) is appropriately configured, the error message will be forwarded or displayed by an additional contact (e.g. an external lamp or horn).

Minimum flow temperature setpoint TVHw

The adjusted minimum flow temperature setpoint will be activated via terminals H1/2 (e.g. an air heater function for a warm air curtain) closes its contact.

The setpoint must be set via operating line 5952.

Excess heat discharge

Active dissipation of excessive heat enables an external heat source to force consumers (heating circuit, DHW storage tank, Hx pump) to draw excessive heat by delivering a forced signal.

The parameter "Excessive heat draw" can be used to determine for every consumer whether or not it should take account of the "forced" signal, and hence whether or not that consumer should participate in the dissipation of heat.

Local effect

When using <u>LPB device address 0 or >1</u>, excessive heat dissipation only acts on the local consumers connected to the controller.

• Central effect (LPB)

When using <u>LPB device address = 1</u>, excessive heat dissipation also acts on the consumers connected to the other controllers in the same segment.

The distribution of excessive heat from segment 0 across other segments of the system is not possible.

Release swimming pool

This function can be used to enable **direct heating of the swimming pool** with the boiler and H... pump externally (e.g. with a manual switch)

For direct charging, a release signal is always required at the H. input. Configuration: Set the function of input H. to "Release swimming pool" **and** select the

associated H.. pump at a QX output.

The function can be used to enable **solar heating of the swimming pool** externally (e.g. with a manual switch) or to define solar charging priority over storage. Configuration: Set the function of input H. to "Release swimming pool". Refer to operating line 2065 "Charging priority solar" for a description of the function.

Function of input H (5950, 6046, 5960)	Function of output QX	Status of H	Release status of generator
-	х	х	No direct heating
Sw. pool	"Not"	х	No direct heating (H acts on
	H pump		solar function)
Sw. pool	H pump	Inactive	Released
Sw. pool	H pump	Active	Released

- = "Release swimming pool" not set

x = Not relevant

Dewpoint monitor

The dewpoint monitor detects the formation of condensate. If the dewpoint monitor responds to condensation, the cooling switches off immediately.

The cooling is enabled when the monitor is no longer signalling condensation and when a definable "locking time" (operating line 946) has expired.

Flow setpoint increase, hygrostat

If the hygrostat responds, the flow setpoint is increased by the fixed value defined in "Flow setpt increase hygro" (operating line 947). As soon as the hygrostat reverts to normal, the flow setpoint returns to the "normal value".

Refrigeration demand

The refrigeration demand is transmitted to the refrigeration generating plant via a contact.

i

The setpoint must be set via operating line 5952.

Heating demand 10V

Heat generation receives heat requests in the form of voltage signals (DC 0...10V). The linear characteristic curve is defined via two fixed points (voltage value 1 / function value 1 and voltage value 2 / function value 2).

Refrig demand 10V

Refrigeration generation receives the refrigeration demand in the form of a voltage signal (DC 0...10 V).

The linear characteristic curve is defined via two fixed points (voltage value 1 / function value 1 and voltage value 2 / function value 2).

Pressure measurement 10V

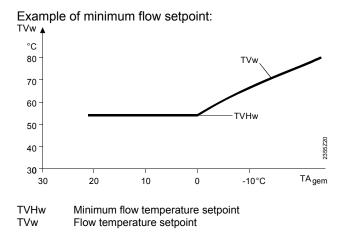
The voltage signal at input H... is converted to a pressure value in a linear manner. The linear characteristic curve is defined via two fixed points (voltage value 1 / function value 1 and voltage value 2 / function value 2).

Relative room humidity 10V

The voltage signal present at input Hx is converted into a linearized relative humidity value. This is used for the dewpoint calculation and dewpoint protection functions of the cooling circuit and for control of the dehumidifier.

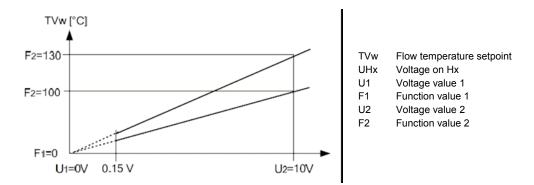
The linear characteristic curve is defined via two fixed points (voltage value 1 / function value 1 and voltage value 2 / function value 2).

Room temperature 10V


The voltage signal present at input Hx is converted into a linearized room temperature value. This, in conjunction with the indoor relative humidity, is used to calculate the dewpoint temperature in the cooling circuit.

If there is no room unit with a room sensor (BSB) connected for heating/cooling circuit 1, the room temperature measured at Hx is also used for room heating/cooling 1 (variant with compensation and room influence).

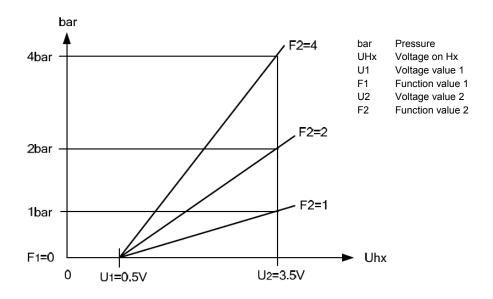
The linear characteristic curve is defined via two fixed points (voltage value 1 / function value 1 and voltage value 2 / function value 2).


Contact type, input H... N/C The contact is normally closed and must be opened to activate the selected function. N/O The contact is normally open and must be closed to activate the selected function.

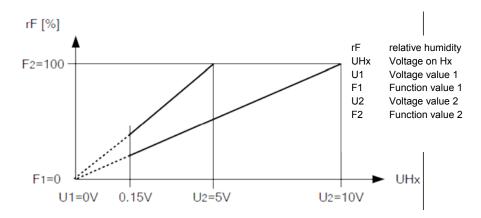
Function value, contact H.. The function "Min flow temp setpoint" on operating line 5950 or 6046 is activated via contact H... The generating plant is controlled constantly at the temperature level set here, either until contact H.. opens again or until a higher heating/cooling demand is delivered.

The linear characteristic is defined via two fixed points. The setting uses two parameter pairs for *Function value* and *Voltage value* (F1/U1 and F2/U2).

• Example for "Heating demand 10V" and "Cooling demand 10V"

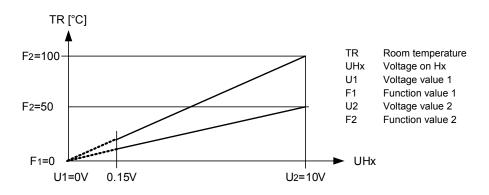


If the input signal drops below the limit value of 0.15 V, the heating demand is invalid and therefore has no effect.


• Example of pressure measurement 10V

117/196

Voltage value 1 Function value 1 Voltage value 2 Function value 2



• Example of relative room humidity 10V

If the measured value is below 0.15V it is regarded as invalid and an error message is generated.

• Example of room temperature 10V

If the measured value is below 0.15V it is regarded as invalid and an error message is generated.

Input H1 and H3 for RVS63..

The following settings for input H1 apply specifically to RVS43..

Input H.. for RVS63..

Line no.	Operating line	
5950	function input H1	
	Optg mode changeover	
	HCs+DHW	
	Optg mode changeover HCs	
	Optg mode changeover HC1	
	Optg mode changeover HC2	
	Optg mode changeover HCP	
	Heat generation lock	
	Error / alarm message	
	Min flow temp setpoint	
	Excess heat discharge	
	Release swimming pool	
	Heat request 10V	
	Pressure measurement 10V	
5951	Contact type input H1	
	NC	
	N/O	
5952	Min flow temp setpoint H1	
5954	Temp value 10V H1	
5956	Pressure value 3.5V H1	
5960	Function input H3	
	Optg mode changeover	
	HCs+DHW	
	Optg mode changeover HCs	
	Optg mode changeover HC1	
	Optg mode changeover HC2	
	Optg mode changeover HCP	
	Heat generation lock	
	Error / alarm message	
	Min flow temp setpoint	
	Excess heat discharge	
	Release swimming pool	
	Heat request 10V	
	Pressure measurement 10V	
5961	Contact type H3	
	NC	
	N/O	
5962	Min flow temp setpoint H3	
5964	Temp value 10V H3	
5966	Pressure value 3.5V H3	

Function of input H...

Changeover of operating mode

• Heating circuit

The operating modes of the heating circuits are switched to Protection mode via the H... terminals (e.g. using a remote telephone switch).

• DHW

DHW heating is locked only when using setting 1: HCs+DHW.

Heat generation lock

The heat source is be locked via the H... terminals. All temperature requests from the heating circuits and DHW are ignored. Frost protection for the boiler is maintained.

The chimney sweep function can be activated although the heat generation lock is switched on.

Error / alarm message

Input H1 generates a controller-internal error message.

If the "Alarm output" (relay outputs QX2-4, operating lines 5891 – 5894) is appropriately configured, the error message will be forwarded or displayed by an additional contact (e.g. an external lamp or horn).

Minimum flow temperature setpoint TVHw

The adjusted minimum flow temperature setpoint will be activated via terminals H1/2 (e.g. an air heater function for a warm air curtain) closes its contact.

Excess heat discharge

Active dissipation of excessive heat enables an external heat source to force consumers (heating circuit, DHW storage tank, Hx pump) to draw excessive heat by delivering a forced signal.

The parameter "Excessive heat draw" can be used to determine for every consumer whether or not it should take account of the "forced" signal, and hence whether or not that consumer should participate in the dissipation of heat.

Local effect

When using <u>LPB device address 0 or >1</u>, excessive heat dissipation only acts on the local consumers connected to the controller.

• Central effect (LPB)

When using <u>LPB device address = 1</u>, excessive heat dissipation also acts on the consumers connected to the other controllers in the same segment. The distribution of excessive heat from segment 0 across other segments of the system is not possible.

Release swimming pool

This function can be used to enable **direct heating of the swimming pool** via the boiler and H... pump externally (e.g. with a manual switch) For direct charging, a release signal is always required at the H.. input. Configuration: Set the function of input H.. to "Release swimming pool" **and** select the associated H.. pump at a QX output.

This function can be used to enable **solar heating of the swimming pool** externally (e.g. with a manual switch) or to define solar charging priority over storage. Configuration: Set the function of input H. to "Release swimming pool". Refer to operating line 2065 "Charging priority solar" for a description of the function.

Function of input H (5950, 6046, 5960)	Function of output QX	Status of H	Release status of generator
-	х	х	No direct heating
Sw. pool	"Not"	x	No direct heating (H acts on
	H pump		solar function)
Sw. pool	H pump	Inactive	locked
Sw. pool	H pump	Active	Released

- = Swimming pool release not set

x = No effect

Heating demand 10V

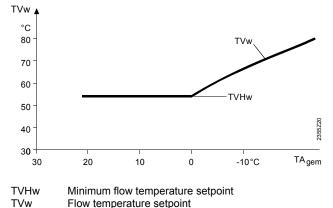
Heat generation receives heat requests in the form of voltage signals (DC 0...10V). The flow temperature setpoint corresponding to the voltage level of 10 V can be adjusted via parameter "Temperature value 10V H...".

Pressure measurement 10V

The voltage signal present at input H.. converted to a pressure value in a linear manner.

The pressure value at 0.5 V is fixed at 0 bar. The pressure value at 3.5 V can be adjusted with parameter *Pressure value* 3.5V H... (operating line 5956).

Contact type, input H... N/C contact The contact is normally closed and must be opened to activate the selected function.

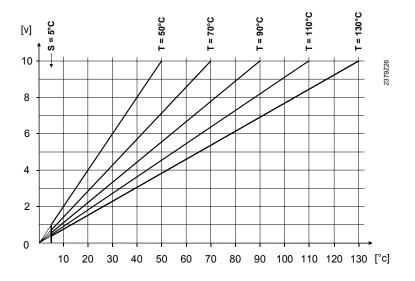

N/O contact

The contact is normally open and must be closed to activate the selected function.

Min flow temp setpoint H.. The function "Minimum flow setpoint" set on operating line 5950, 5960 or 6046 is activated via contact H... The boiler is controlled constantly at the temperature level set here either until contact H... opens again or until a higher heat request is delivered.

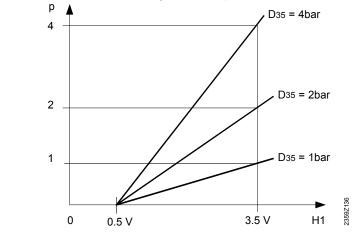
i

If several heat requests are received at the same time (LPB, contact H.. contact, DHW, or from the controller itself), the highest of them will automatically be selected.



Temp value 10V H..

The voltage signal present at input H. is converted to a linearized temperature value and then forwarded as the flow temperature setpoint.


The flow temperature setpoint corresponding to the voltage level of 10 V can be adjusted via parameter "Temperature value 10V H...".

T = maximum value of heat demand

S = minimum limitation of heat demand = 5 $^{\circ}$ C

The voltage signal present at input H... is converted into a linearized pressure value. The pressure value at 3.5 V can be adjusted with parameter Pressure value 3.5V H..". Example:

Pressure value (bar) р Н1

Voltage at H..

Input EX2

Line no.	Operating line
5982	Function input EX2
	Counter for second burner
	stage
	Heat generation lock
	Error / alarm message
	SLT error message
	Excess heat discharge
5983	Cont type input EX2
	NC
	N/O

Function input EX2

Counter for second burner stage

The counting values (hours run and number of starts) for the second burner stage are recorded based on the signal received at input EX2. If the function is not activated, the counting values are counted based on the state of relay K5.

Heat generation lock

The heat source will be locked via terminals EX2.

All temperature requests made by the heating circuits and by DHW will be ignored. Frost protection for the boiler will be maintained.

The chimney sweep function can be activated although the heat generation lock is switched on.

Error / alarm message

Input EX2 generates a controller-internal error message.

If the "Alarm output" (relay outputs QX2-4, operating lines 5891 – 5894) is appropriately configured, the error message will be forwarded or displayed by an additional contact (e.g. an external lamp or horn).

SLT error message

The input generates error message 110.

Excess heat discharge

Active dissipation of excessive heat enables an external heat source to force consumers (heating circuit, DHW storage tank, Hx pump) to draw excessive heat by delivering a forced signal.

The parameter "Excessive heat draw" can be used to determine for every consumer whether or not it should take account of the "forced" signal, and hence whether or not that consumer should participate in the dissipation of heat.

Local effect

When using <u>LPB device address 0 or >1</u>, excessive heat dissipation only acts on the local consumers connected to the controller.

• Central effect (LPB)

When using <u>LPB device address = 1</u>, excessive heat dissipation also acts on the consumers connected to the other controllers in the same segment.

The distribution of excessive heat from segment 0 across other segments of the system is not possible.

Mixing valve groups basic unit

Line no.	Operating line
6014	Function mixing group 1
6015	Heating circuit 1/2
	Return temp controller
	Primary controller / system
	pump
	DHW primary controller
	Instantaneous DHW heater
	Return controller cascade
	Cooling circuit 1
	Heating circuit/cooling circuit 1

The mixing valve groups are assigned to the following connections:

	RVS63.283 only
Mixing valve group 1	Mixing valve group 2
Q2, Y1, Y2, B1	Q6, Y5, Y6, B12

Heating circuit 1/2

For this application, the respective settings of operating page "Heating circuit 1/2" can be adapted.

Return temp controller

For this application, the respective settings of operating page "Boiler" can be adapted. **Primary controller / system pump**

For this application, the respective settings of operating page "Primary controller / system pump" can be adapted.

DHW primary controller

For this application, the respective settings of operating page "DHW storage tank" can be adapted.

Instantaneous DHW heater

For this application, the respective settings of operating page "Instantaneous DHW heater" can be adapted.

Return controller cascade

For this application, the respective settings of operating page "Cascade" can be adapted.

Cooling circuit 1

For this application, the respective settings of operating page "Cooling circuit 1" can be adapted.

Heating circuit/cooling circuit 1

For this application, the respective settings of operating page "Heating circuit 1 and cooling circuit 1" can be adapted.

Extension module

6020,	Function extension module 1, 2
6021	No function
	Multifunctional
	Heating circuit 2
	Return temp controller
	Solar DHW
	Primary controller / system
	pump
	DHW primary controller
	Instantaneous DHW heater
	Return controller cascade
	Cooling circuit 1

Multifunctional

Functions that can be assigned to the multifunctional inputs / outputs appear on operating lines 6030, 6031, 6032 and 6040, 6041.

Heating circuit 2

For this application, the respective settings of operating page "Heating circuit 2" can be adapted.

Return temp controller

For this application, the respective settings of operating page "Boiler" can be adapted. **Solar DHW**

For this application, the respective settings of operating page "Solar" can be adapted. **Primary controller / system pump**

For this application, the respective settings of operating page "Primary controller / system pump" can be adapted.

DHW primary controller

For this application, the respective settings of operating page "DHW storage tank" can be adapted.

Instantaneous DHW heater

For this application, the respective settings of operating page "Instantaneous DHW heater" can be adapted.

Return controller cascade

For this application, the respective settings of operating page "Cascade" can be adapted.

Cooling circuit 1

For this application, the respective settings of operating page "Cooling circuit 1" can be adapted.

Connections:						
	QX21	QX22	QX23	BX21	BX22	H2
Multifunction	*	*	*	*	*	*
Heating circuit	Y5	Y6	Q6	B12	*	*
2						
Return temp	Y7	Y8	Q1	B7	*	*
controller						
Solar DHW	*	*	Q5	B6	B31	*
heating						
Primary	Y19	Y20	Q14	B15	*	*
controller						
DHW primary	Y31	Y32	Q3	B35	*	*
controller						
Instantaneous	Y33	Y34	Q34	B38	B39	Flow
DHW heater						switch
Return	Y25	Y26	Q25	B70	B10	*
controller						
cascade						
Cooling circuit	Y23	Y24	Q24	B16	*	*
1						

* Freely selectable in QX.../ BX...

QX extension module

Can be configured for freely selectable QX.../ BX...

Line no.	Operating line
6030	Relay output QX21, QX22, QX23
6031	None
6032	Circulating pump Q4
0032	El imm heater DHW K6
	Collector pump Q5
	H1 pump Q15
	Boiler pump Q1
	Bypass pump Q12
	Alarm output K10
	2nd pump speed HC1 Q21
	2nd pump speed HC2 Q22
	2nd pump speed HCP Q23
	Heat circ pump HCP Q20
	H2 pump Q18
	System pump Q14
	Heat gen shutoff valve Y4
	Solid fuel boiler pump Q10
	Time program 5 K13
	Buffer return valve Y15
	Solar pump ext exch K9
	Solar ctrl elem buffer K8
	Solar ctrl elem swi pool K18
	Collector pump 2 Q16
	H3 pump Q19
	Flue gas relay K17
	Assisted firing fan K30
	Cascade pump Q25
	St tank transfer pump Q11
	DHW mixing pump Q35
	DHW interm circ pump Q33
	Heat request K27
	Refrig demand K28
	Dehumidifier K29
	Diverting valve, cooling Y21

Refer to function description, operating line "Relay output QX1".

BX extension module

Can be configured for freely selectable QX.../ BX...

Line no.	Operating line
6040	Sensor input BX21, BX22
6041	None
	DHW sensor B31
	Collector sensor B6
	Return sensor B7
	DHW circulation sensor B39
	Buffer storage tank sensor B4
	Buffer storage tank sensor B41
	Flue gas temp sensor B8
	Common flow sensor B10
	Solid fuel boiler sensor B22
	DHW charging sensor B36
	Buffer storage tank sensor B42
	Common return sensor B73
	Cascade return sensor B70
	Swimming pool sensor B13
	Collector sensor 2 B61
	Solar flow sensor B63
	Solar return sensor B64

See the function description for operating line "Sensor input BX1".

H2 extension module

	Line no.	Operating line
	6046	Function input H2
		Optg mode changeover
		HCs+DHW
		Optg mode changeover HCs
		Optg mode changeover HC1
		Optg mode changeover HC2
		Optg mode changeover HCP
		Heat generation lock
		Error / alarm message
		Min flow temp setpoint
		Excess heat discharge
		Release swimming pool
		Dew point monitor
		Flow setpt increase hygro
		Refrigeration demand
		Heat request 10V Refrig demand 10V
		Pressure measurement 10V
		Relative room humidity 10V
		Room temperature 10V
	6047	
	0047	Contact type H2
		NC N/O
nly	6048	Function value, contact H2
	6049	Voltage value 1, H2
	6050	Function value 1, H2
	6051	Voltage value 2, H2
	6052	Function value 2, H2
		· · ·
nlv	6048	Min flow town sotnaint H2

RVS63 only	

RVS43..

6048	Min flow temp setpoint H2
6050	Temp value 10V H2
6052	Pressure value 3.5V H2

The settings for input H2 on the extension module are the same as those of the H.. inputs on the basic unit. They are described under the operating line "Function of input H..". Refer to page 114,119.

Line no.	Operating line
6070	Function output UX
	None
	Boiler pump Q1
	DHW pump Q3
	DHW interm circ pump Q33
	Heat circ pump HC1 Q2
	Heat circ pump HC2 Q6
	Heat circ pump HCP Q20
	Collector pump Q5
	Solar pump ext exch K9
	Solar pump buffer K8
	Solar pump swi pool K18
	Collector pump 2 Q16
	Boiler setpoint
	Power demand
	Heat demand
6071	Signal logic output UX
	Standard
	Inverted
6075	Temperature value 10V UX

Function output UX The voltage-modulated output can be used either for speed-controlled pumps or as an output for a voltage-proportional temperature request.

	Speed-controlled pumps: The output signal at UX corresponds to the required speed for the selected pump.
	Boiler temp setpoint:
	The output signal at UX corresponds to the boiler setpoint
	Output demand:
	The output signal at UX is proportional to the output demand via the primary circuit flow.
	Heat request:
	The output signal at UX corresponds to the primary circuit flow setpoint.
Signal logic output UX	The voltage signal can be inverted. Thus, it can also be used to control pumps with variable speeds, or temperature request receivers that use inverted signal logic.
Temperature value 10V UX	This operating line is used to define the maximum temperature request (corresponding to 10 V).

Types of sensor/readjustment

	Line no.	Operating line
	6097	Sensor type collector
		NTC 10k Platinum 1000
	6098	Readjustm collector sensor
	6099	Readjustm coll sensor 2
	6101	Sensor type flue gas temp
		NTC 10k
		Platinum 1000
	6102	Readjustm flue gas sensor
Sensor type collector	Selection o characteris	f type of sensor used. The controller will use the respective temperature tic.
Readjustm collector sensor	The measu	red value can be corrected.

Line no.	Operating line
6110	Time constant building

When the outside temperature varies, the room temperature changes at different rates, depending on the building's thermal storage capacity.

The above setting is used to adjust the response of the flow temperature setpoint when the outside temperature varies.

- Example:
- > 20 hours

The room temperature responds *more slowly* to outside temperature variations. 10 - 20 hours

This setting can be used for most types of buildings.

< 10 hours

The room temperature responds *more quickly* to outside temperature variations.

Frost protection for the plant

Line no.	Operating line
6120	Frost protection plant

The pumps are activated depending on the **current** outside temperature, even if there is no heat request.

Outside temperature	Diagram			
4 °C	Continuously on	ON		
-51.5 °C	On for 10 minutes at 6-hour intervals	Cycle (takt)		
1.5 °C	Continuously OFF	OFF		
	OFF	2371230		
	· · · · · · · ·			
-6 -5 -4	-3 -2 -1 0 1 2 3 4	TA °C		

External requirements

Line no.	Operating line
6128	Heat request below OT
6129	Heat request above OT
6131	Heat req in economy mode
	Off¦On DHW¦On

Heat request below OT The heat source (K27 with QX... or output UX) is put into operation only if the outside temperature lies below / above the threshold.

Heat req in economy mode

Economy mode can be selected from menu "Special operation / service" (operating line 7139).

In Economy mode, the heat source (K27 with QX.. or output UX) operates as follows: Off: Remains locked

- Only DHW: Released for DHW charging
- On: Always released.

Line no.	Operating line				
6200	Save sensors				
At midnight, the basic unit stores the states at the sensor terminals.					

If, after storage, a sensor fails, the basic unit generates an error message. This setting is used to ensure immediate saving of the sensors. This becomes a requirement when, for instance, a sensor is removed because it is no longer needed.

Parameter reset

Line no.Operating line6205Reset to default parameters

All parameters can be reet to their default values. Exempted from this are the following operating pages: Time of day and date, operator section, radio communication and all time programs.

Plant diagram

Line no.	Operating line
6212	Check-No. heat source 1
6213	Check-No. heat source 2
6215	Check-No. storage tank
6217	Check-No. heating circuits

To identify the current plant diagram, the basic unit generates a check number. The check number is made up of the lined up part diagram numbers.

Structure of control number

Every control number consists of 3 columns, each representing the application of a plant component. Every column shows a number with a maximum of 2 digits. Exception is the first column. If the first digit in the first column is a 0, the 0 will be hidden.

	1st column 2 digits	2nd column 2 digits	3rd column 2 digits
BZ6212		Solar	Oil / gas boiler
BZ6213		Solid fuel boiler	
BZ6215		Buffer storage tank	DHW storage tank
BZ6217	Heating circuit P	Heating circuit 2	Heating circuit 1

Solar								0	il / g	jas I	boil	er		
					8									
One collector field with sensor B6 and collector pump Q5	2 collector fields with sensors B6 & B61 and collector pumps Q5 and Q16	Buffer tank c harging pump K8	Solar diverting valve, buffer K8	Solar charging pump, swmming pool K18	Solar diverting valve, swimming pool K18	External solar heat exchanger, solar pump K9 DHW = dom. hot water, B = Buffer	S Check-Numbers	1-stage burner	2-stage burner	o d Modulating burner	Boiler pump	Bypass pump	Return mixing valve	
0				١	lo s	olar	00		1	No b	oile	r		
1						*	01	х						
3 5		v				DHW/B	02		х					
6		х	х				03	х			х			
8		х	^			DHW+B	04	~	х		x			
9		~	х			DHW/B		~	^		^	~		
10		х	~			DHW	05	х				х		
11			х			DHW	06		Х			Х		
12		х				В	07	х			Х	х		
13			Х			В	80		Х		Х	Х		
14				Х			09	х			х		х	
15					х		10	~	х		x		x	
17				х		DHW/B			^		^		<u> </u>	
18					Х	DHW/B	11			Х				
19		х		Х			12			х	Х			
20			х		х		13			Х		х		
22		х				DHW+B	14			х	х	Х		
23 24		v	х	v	х	DHW/B DHW	15			х	х		х	
24		х	v	х	v	DHW	10			<u> </u>	~			
25 26		х	х	х	Х	B								
20		^	х	^	х	B								
	31		Ê		Ê	*								
	33					DHW/B								
	35		х											
	37	х				DHW+B								
	38		х			DHW/B								
	39	х				DHW								
	40		Х			DHW								
	41		Х			В								
	42			<u> </u>	х									
	44			х		DHW/B								
	45				х	DHW/B								
	46		х		х									
	48	х	_	х	_	DHW+B								
	49		Х		х	DHW/B								
	50	х		х		DHW								
	51		X		X	DHW								
	52		х	1	х	В								

* The DHW storage tank is charged with collector pump Q5.

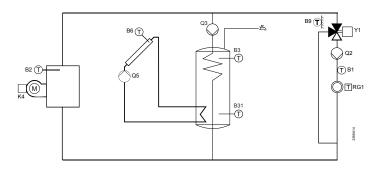
Check-No. heat source 2

	Solid fuel boiler
0 1	No solid fuel boiler Solid fuel boiler, boiler
2	pump Solid fuel boiler, boiler pump, integration DHW storage tank

		Buffer storage tank		DHW storage tank
	0	No buffer storage tank	0	No DHW storage tank
	1	buffer storage tank	1	electric immersion heater
	2	Buffer storage tank, solar	2	Solar connection
	-	connection	4	charging pump
	4	Buffer storage tank, heat	5	Charging pump, solar
	-	source valve	Ŭ	connection
	5	Buffer storage tank, solar	13	Diverting valve
	5	connection, heat source	14	Diverting valve, solar
		valve	14	connection
		valve	16	Primary controller, without
			10	heat exchanger
			17	Primary controller, 1 heat
				exchanger
			19	Intermediate circuit,
			19	without heat exchanger
			20	Intermediate circuit, 1 heat
			20	
			22	exchanger
			22	Charging pump /
				intermediate circuit,
			23	without heat exchanger
			23	Charging pump /
				intermediate circuit, 1 heat
			0.5	exchanger
			25	Diverting valve /
				intermediate circuit,
			00	without heat exchanger
			26	Diverting valve /
				intermediate circuit, 1 heat
				exchanger
			28	Primary controller /
				intermediate circuit,
				without heat exchanger
			29	Primary controller /
				intermediate circuit, 1 heat
				exchanger
Heating circuit P		Heating circuit 2		Heating circuit 1
0 No heating circuit	00	No heating circuit	0	No heating circuit

Check-No.	heating	circuit
-----------	---------	---------

Check-No. storage tank


	Llasting singuit D		Heating singuit 0		llesting singuit 4
	Heating circuit P		Heating circuit 2		Heating circuit 1
0	No heating circuit	00	No heating circuit	0	No heating circuit
2	2nd heating circuit pump	02	2nd heating circuit pump	1	Circulation via boiler pump
		03	Heating circuit pump,	2	2nd heating circuit pump
			mixing valve	3	Heating circuit pump,
					mixing valve
				57	Heating/cooling, 2-pipe,
					common distribution
				810	Cooling only, 2-pipe
				12	Heating/cooling, 4-pipe,
					common distribution
				141	6Heating/cooling, 4-pipe,
					common distribution
				202	7Heating/cooling, 2-pipe,
					separate distribution
				303	8Heating/cooling, 4-pipe,
					separate distribution
				404	2Cooling only, 4-pipe

Example

Heat source

Storage tank:

Solar with collector sensor and pump, 1-stage burner and boiler pump Charging pump and solar connection Heating circuit 1: Heating circuit pump and mixing valve

Displays on the operator unit:

Check-No. heat source 1		1	0	1
Check-No. storage tank				5
Check-No. heating circuit				3

Device data

Line no.	Operating line
6220	Software version
	The software version indicated here represents the current version of the
	basic unit.

5.19 LPB

Address / power supply

Device address and

segment address

Bus power supply

Line no.	Operating line		
6600	Device address		
6601	Segment address		
6604	Bus power supply function		
	Off		
	Automatically		
6605	Bus power supply state		
	Off		
	On		

The controller LPB address is divided into 2 parts each consisting of two 2-digit numerals. Example:

14	16
Segment number	Device number

The bus power supply enables the bus system to be powered directly by the individual controllers (no central bus power supply). The type of bus power supply can be selected.

- Off: No bus power supply via the controller.
- Automatically: The bus power supply (LPB) via the controller is automatically switched on and off depending on the requirements of the LPB.

Bus power supply state

- The display shows whether the controller currently supplies power to the bus:
- Off: The bus power supply via controller is currently inactive.
- On: The bus power supply via controller is currently active. At the moment, the controller supplies some of the power required by the bus.

Central functions

Line no.	Operating line
6620	Action changeover functions
	Segment
	System
6621	Summer changeover
	Local
	Centrally
6623	Changeover of operating mode
6624	Manual source lock
6625	DHW assignment
	Local HCs
	All heating circuits in the segment:
	All HCs in system
6627	Refrigeration demand
	Locally Centrally
6631	Ext source with eco mode
	Off¦On DHW¦On

These settings are only relevant for device address 1.

Range of action of changeover

- The range of action of central changeover can be defined. This applies to the following types of limitation:
- Summer changeover (when selecting "Central" on line 6623)
- Summer changeover (with "Central" setting on operating line 6621) Entries:
- Segment: Changeover takes place with all controllers in the same segment.
- System: Changeover takes place with all controllers in the entire system (in all segments). The controller must be located in segment 0!

Summer changeover	 The scope of summer changeover is as follows: Local entry: Local action; the local heating circuit is switched based on operating lines 730, 1030 and 1330. Central entry: Central entry: Central action; depending on the setting made on operating line "Action changeover functions", " either the heating circuits in the segment or those of the entire system are switched based on operating line 730. 			
Changeover of operating mode	 The scope of the operating mode changeover via input H is as follows: Local entry: Local action; the local heating circuit is switched on and off. Central entry: Central action; depending on the setting made on operating line "Action changeover functions", either the heating circuits in the segment or those of the entire system are switched based on operating line 730. 			
Manual source lock	 The range of action of summer changeover is as follows: Local entry: Local action; the local source is locked. Entry segment: Central action; all sources of the cascade are locked. 			
Assignment of DHW heating	 Assignment of DHW heating is required only if it is controlled by a heating circuit program (refer to operating lines 1620 and 5061). Settings: Local heating circuits: DHW is only heated for the local heating circuit All heating circuits in the segment: DHW is heated for all heating circuits in the segment All heating circuits in the system: DHW is heated for all heating circuits in the system. With all settings, controllers in holiday mode are also considered for DHW heating.			
Refrigeration demand	"Refrigeration demand K28" sets the relay parameter on the QX for the output of the refrigeration demand. Depending on the setting (local/central) the demand is transmitted by the local cooling circuit or all cooling circuits in the system. This option applies only to the device with device address 1.			
Ext source with eco mode	Economy mode can be selected from menu "Special operation / service" (operating line 7139). In Economy mode, external heat sources on the LPB are operated as follows: Off: Remains locked Only DHW: Released for DHW charging On: Always released.			

Clock

	6640	Clock mode Autonomously Slave without remote
		Slave with remote setting
	6650	Master Outside temp source
Clock mode	-	defines the impact of the system time on the controller's time setting. The
	impact is as	
		ously: The time of day on the controller can be readjusted
	The contr	oller's time of day is not matched to the system time
	 Slave with readjusted 	nout remote adjustment: The time of day on the controller cannot be d
	The contr time	oller's time of day is constantly and automatically matched to the system
		n remote adjustment: The time of day on the controller can be readjusted; ne time, the system time is readjusted since the change is adopted from the
	The contr system tir	oller's time of day is still automatically and constantly matched to the ne
	 Master: T 	he time of day on the controller can be readjusted
	The time readjuste	of day on the controller is used for the system. The system time will be d
outside temperature	Only 1 outsid	de temperature sensor is required in the LPB plant. This sensor is
source		a freely selectable controller and delivers via LPB the signal to the vithout sensor.
	The first pup	peral to appear on the display is the segment no. followed by the device no.

The first numeral to appear on the display is the segment no. followed by the device no.

5.20 Faults

When a fault $\hat{\mathbf{A}}$ is pending, an error message can be displayed on the info level by pressing the Info button. The display describes the cause of the fault.

Acknowledgements

Line no.	Operating line
6710	Reset alarm relay

When a fault is pending, an alarm can be triggered via relay QX... The QX... relay must be appropriately configured.

This setting can be used to reset the alarm relay.

Temperature alarms

RVS43.. only

Line no.	Operating line
6740	Flow temp 1 alarm
6741	Flow temp 2 alarm
6743	Boiler temp alarm
6745	DHW charging alarm
6746	Flow temp., Cooling 1 alarm

The difference of setpoint and actual temperature is monitored. A control offset beyond the set period of time triggers an error message.

Error history

Line no.	Operating line	
68006819)	History

The basic unit stores the last 10 faults in non-volatile memory. Any additional entry deletes the oldest in the memory. For each error entry, error code and time of occurrence is saved.

5.21 Maintenance/special mode

Maintenance functions

	1 la surs	Or continue line			
	Line no.	Operating line Burner hoursinterval			
	7040				
	7041	Burner hrssince maintenance			
	7042	Burner start interval			
	7043	Burn starts since maint			
	7044	Maintenance interval			
	7045	Time since maintenance			
	7053	Flue gas temp limit			
	7054	Delay flue gas message			
	7119	Economy function Locked released			
	7120	Economy mode Off ¦ On			
Burner hours run interval, burner start interval	burner starts Counted for	the selected number of burner operating hours or the selected number of s has elapsed, a service message will be displayed. the message are the number of operating hours and the number of starts urner stage (input E1).			
Burner hours run, burner starts since service	The current reset to 0.	value is summated and displayed. On this operating line, the value can be			
Flue gas temp limit	Shows a maintenance message on the display and, if configured, activates flue gas relay K17.				
Delay flue gas message	Delays displ	ay of the maintenance message and activation of the flue gas relay (K17).			
Economy function	Released	ode is not possible. ode can be activated.			
Economy mode	Switches ec	onomy mode on or off			
Chimney sweep	Line no.	Operating line			
	7130	Chimney sweep function			
	The burner	will be switched on. To ensure continuous burner operation, the only switch-			
	off point use	d is the boiler temperature's maximum limitation (TKmax).			
	First. all con	nected loads will be locked to ensure the boiler temperature will reach the			
		4 °C as quickly as possible.			
	-	inimum temperature of 64 °C is attained, the available heating circuits are			
		one by one, using a dummy load, to make sure the heat generated by the			
		wn off so that the burner will remain in operation.			
	•	easons, maximum limitation of the boiler temperature (TKmax) remains ng as the chimney sweep function is active.			
i	The functior timeout of 1	n is deactivated by setting on this operating line, or automatically after a hour.			

Manual operation

Line no.	Operating line
7140	Manual control

When manual control is activated, the relay outputs are no longer energized and deenergized according to the control state but are set to a predefined manual control state in accordance with their functions (see table below).

The burner relay energized in manual control can be deenergized by the electronic temperature controller (TR).

Name		relay	State
Oil / gas boiler	Burner 1st stage	K4	On
	Burner 2nd stage	K5	On
	Burner mod. release	K4	On
	Burner mod. open	Y17 (K5)	On
	Burner mod. closed	Y18	Off
	Boiler pump	Q1	On
	Bypass pump	Q12	On
	Return mixing valve open / closed	Y7/Y8	Off
Solid fuel beiler	Boiler pump	Q10	On
Solid fuel boiler Solar	Collector pump	Q10 Q5	Off
50181			-
	Collector pump 2	Q16	Off
	Ext. heat exchanger pump	K9	Off
	Controlling element buffer storage tank	K8	Off
	Controlling element swimming pool	K18	Off
DHW	Charging pump	Q3	On
	Diverting valve	Q3	Off
	Mixing pump	Q32	Off
	Intermediate circuit pump	Q33	On
	Mixing valve opening / closing	Y31/Y32	Off
	Instantaneous DHW heater pump	Q34	On
	Instantaneous DHW heater on / off	Y33/Y34	Off
	Circulating pump	Q4	On
	Electric immersion heater	K6	On
huffen stenens tenle		Y4	-
buffer storage tank	Source shutoff valve		On Off
	Return valve	Y15	Off
Heating circuit 13	2nd heating circuit pump	Q2 Q6 Q20	On
	Heating circuit mixing valve opening / closing	Y1 / Y2 Y5 / Y6	Off
	Heating circuit pump 2nd speed	Q21 Q22 Q23	On
Cooling circuit 1	Cooling circuit pump	Q24	On
-	Cooling circuit mixing valve opening / closing	Y23/Y24	Off
	Diverting valve for cooling	Y21	Off
Primary controller	System pump	Q14	On
	Mixing valve opening / closing	Y19/Y20	Off
Hx group	Pump H1	Q15	On
9.00p	Pump H2	Q18	On
	Pump H3	Q18 Q19	On
Auvilian (functions			
Auxiliary functions	Alarm output	K10	Off
	Time program 5	K13	Off
	Heat demand	K27	On
	Refrigeration demand	K28	Off
	Storage tank transfer pump	Q11	Off

Setpoint adjustment in manual control

After manual control has been activated, a change to the basic display must be made. There, the maintenance / special mode symbol $\sqrt[4]{}$ appears.

Press the info button to switch to info display "Manual mode", where the setpoint can be adjusted.

 Line no.
 Operating line

 7150
 Simulation outside temp

To facilitate commissioning and fault tracing, outside temperatures in the range from – 50 to +50°C can be simulated. During simulation, the actual, the composite and the attenuated outside temperature will be overridden by the set simulated temperature. During simulation, calculation of the 3 mentioned outside temperatures continues and the temperatures are available again when simulation is completed.

•
1

The function is deactivated by setting -.- on this operating line, or automatically after a timeout of 1 hour.

Telephone customer service

Line no.	Operating line
7170	Telephone customer service

Setting of phone number that appears on the info display.

5.22 Input / output test

Line no.	Operating line
77007999	

The input / output test is used to check the correct functioning of the connected components.

When selecting a setting from the relay test, the relevant relay is energized, thus putting the connected component into operation. The correct functioning of the relays and wiring can thus be tested.

<u>/</u>

Important:

During the relay test, limitation of the boiler temperature by the electronic control thermostat (TR) remains activated. Other limits are deactivated. Selector sensor values are updated within a maximum of 5 seconds. The display is made with no measured value correction.

5.23 State

Messages

The current operating state of the plant is visualized by means of status displays.

Line no.	Operating line
8000	State of heating circuit 1
8001	State of heating circuit 2
8002	State heating circuit P
8003	State of DHW
8005	State of boiler
8007	State of solar
8008	State solid fuel boiler
8010	State buffer storage tank
8011	State swimming pool

State heating circuit

End user (info level)	Commissioning, heating engineer	
Limit thermostat has cut out	Limit thermostat has cut out	3
Manual control active	Manual control active	4
Floor curing function active	Floor curing function active	102
	Overtemp protection active	56
	Restricted, boiler protection	103
	Restricted, DHW priority	104
	Restricted, buffer priority	105
Heating mode restricted		106
	Forced discharging buffer storage tank	107
	Forced discharging DHW	108
	Forced discharging heat source	109
	Forced heat release	110
	Overrun active	17
Forced heat release		110
	Opt start control + boost heating	111
	Optimum start control	112
	Boost heating	113
Heating mode Comfort	Heating mode Comfort	114
C C	Optimum stop control	115
Heating mode Reduced	Heating mode Reduced	116
C C	Frost protection room active	101
	Frost protection flow active	117
	Frost protection plant active	23
Frost protection active		24
Summer operation	Summer operation	118
·	24-hour Eco active	119
	Setback Reduced	120
	Setback frost protection	121
	Room temp lim	122
Off	Off	25

Cooling

End user (info level)	Commissioning, heating engineer	
Dewpoint monitor active	Dewpoint monitor active	133
Manual control active	Manual control active	4
Fault.	Fault.	2
	Frost protection flow active	117
Frost protection active		24
	Locking period at end of heating	135
	Locked, energy source	205
	Locked, buffer	206
Cooling mode locked		146
	Flow setpt increase hygro	136
	Min. flow limit, dewpoint	177
	Min. flow limit, outside temp	178
Cooling mode, restricted		144
	Cooling mode, Comfort	150
	Overrun active	17
Cooling mode, Comfort		150
Protection mode, cooling	Protection mode, cooling	149
¥	Frost protection plant active	23

Frost protection active		24
Cooling limit OT active	Cooling limit OT active	134
	Off	25
	Room temp lim	122
	Flow limit reached	179
Off		25
Cooling mode off	Cooling mode off	138

State of DHW

End user (info level)	Commissioning, heating engineer	
Limit thermostat has cut out	Limit thermostat has cut out	3
Manual control active	Manual control active	4
Draw-off mode	Draw-off mode	199
	Recooling via collector	77
	5	78
Recording active	Recooling via DHW/HCs	53
Recooling active	Discharging protection active	79
	Charging time limitation active	80
	DHW charging locked	81
Charging lock active	Drive charging locked	82
	Forced, max stor tank temp	83
	Forced, max sharging temp	84
	Forced, legionella setpoint	85
	Forced, nominal setpoint	86
Forced charging active		67
	Charging electric, leg setpoint	87
	Charging electric, nominal setpoint	88
	Charging electric, Red setpoint	89
	Charging electric, frost setpoint	90
	El imm heater released	91
Charging el im heater		66
~ ~ ~	Push, leg setpoint	92
	Push, nominal setpoint	93
Push active		94
	Charging, leg setpoint	95
	Charging, nominal setpoint	96
	Charging, reduced setpoint	97
Charging active		69
Frost protection active	Frost protection active	24
Overrun active	Overrun active	17
Stand-by charging	Stand-by charging	201
	Charged, max stor temp	70
	Charged, max charg temp	71
	Forced, legio temp	98
	Charged, nominal temp	99
	Forced, Reduced temp	100
Charged		75
Off	Off	25
Ready	Ready	200

State of boiler

End user (info level)	Commissioning, heating engineer	
SLT has cut out	SLT has cut out	1
SLT test active	SLT test active	123
Fault.	Fault.	2
Limit thermostat has cut out	Limit thermostat has cut out	3
Manual control active	Manual control active	4
	Chimney sweep function, high-fire	5
	Chimney sweep function, low-fire	6
Chimney sweep function active		7
	Locked, manually	8
	Locked, solid fuel boiler	172
	Locked, automatically	9
	Locked, outside temperature	176
	Locked, Economy mode	198
Locked		10
	Minimum limitation	20
	Minimum limitation, low-fire	21
Minimum limitation active	Minimum limitation active	22
	Protective start-up	11
	Protective startup, low-fire	12
	Return limitation	13
	Return temperature limitation, low-fire	14
In operation		18

Charging buffer storage tank	Charging buffer storage tank	59
In operation for HC, DHW	In operation for HC, DHW	170
In partial load operation for HC, DHW	In partial load operation for HC, DHW	171
Released for HC, DHW	Released for HC, DHW	173
In operation for DHW	In operation for DHW	168
In partial load operation for DHW	In partial load operation for DHW	169
Released for DHW	Released for DHW	174
In operation for heating circuit	In operation for heating circuit	166
In partial load operation for HC	In partial load operation for HC	167
Released for HC	Released for HC	175
Overrun active	Overrun active	17
Released	Released	19
	Frost protection plant active	23
Frost protection active		24
Off	Off	25

State of solar

End user (info level)	Commissioning, heating engineer	
Manual control active	Manual control active	4
Fault.	Fault.	2
Frost protection collector active	Frost protection collector active	52
Recooling active	Recooling active	53
Max stor tank temp reached	Max stor tank temp reached	54
Evaporation protection active	Evaporation protection active	55
Overtemp protection active	Overtemp protection active	56
Max charg temp reached	Max charg temp reached	57
Charging DHW+buffer+swi pool	Charging DHW+buffer+swi pool	151
Charging DHW+buffer	Charging DHW+buffer	152
Charging DHW+swi pool	Charging DHW+swi pool	153
Ladung Puffer+Schwimmbad	Charging buffer+swimming pool	154
Charging DHW	Charging DHW	58
Charging buffer storage tank	Charging buffer storage tank	59
Charg swimm pool	Charg swimm pool	60
	Min charg temp not reached	61
	Temp diff insufficient	62
Radiation insufficient	Radiation insufficient	63

State solid fuel boiler

		_
End user (info level)	Commissioning, heating engineer	
Manual control active	Manual control active	4
Fault.	Fault.	2
Overtemp protection active	Overtemp protection active	56
	Locked, manually	8
	Locked, automatically	9
Locked		10
	Minimum limitation	20
	Minimum limitation, low-fire	21
Minimum limitation active	Minimum limitation active	22
	Protective start-up	11
	Protective startup, low-fire	12
	Return temperature limitation	13
	Return temp. limitation, low-fire	14
In operation for heating circuit	In operation for heating circuit	166
In partial load operation for HC	In partial load operation for HC	167
In operation for DHW	In operation for DHW	168
In partial load operation for DHW	In partial load operation for DHW	169
In operation for HC, DHW	In operation for HC, DHW	170
In partial load operation for HC, DHW	In partial load operation for HC, DHW	171
Overrun active	Overrun active	17
In operation	In operation	18
Assisted firing fan active	Assisted firing fan active	163
Released	Released	19
	Frost protection plant active	23
	Frost protection boiler active	141
Frost protection active		24
Off	Off	25

State buffer storage tank

End user (info level)	Commissioning, heating engineer	
Frost protection cooling active	Frost protection cooling active	202
	Locking period at end of heating	135
	DHW charging locked	81
Charging restricted		124
	Forced charging active	67
	Full charging active	203
Charging active		69

	Charged, forced charg required temp	72
	Charged, required temp	73
	Charged, min charg temp	143
Charged		75
Hot	Hot	147
No demand	No demand	51
Frost protection active	Frost protection active	24
	Charging electric, em operation	64
	Charging electric, source prot	65
	Charging electric, defrost	131
	Charging electric, forced	164
	Charging electric, substitute	165
Charging el im heater		66
	DHW charging locked	81
	Restricted, DHW priority	104
Charging restricted		124
	Forced charging active	67
	Partial charging active	68
Charging active	Charging active	69
	Recooling via collector	77
	Recooling via DHW/HCs	142
Recooling active		53
	Charged, max stor temp	70
	Charged, max charg temp	71
	Charged, forced charg required temp	72
	Charged, required temp	73
	Partially charged, temp setpoint	74
	Charged, min charg temp	143
Charged		75
Cold	Cold	76
No heat request	No heat request	51

State swimming pool

End user (info level)	Commissioning, heating engineer	
Manual control active	Manual control active	4
Fault.	Fault.	2
Heating mode restricted	Heating mode restricted	106
Forced heat release	Forced heat release	110
	Heating mode, generation	155
Heating mode		137
Heated, max. sw. pool temp	Heated, max. sw. pool temp	156
	Heated, solar setpoint	158
	Heated, source setpoint	157
Heated		159
	Heating mode solar off	160
	Heating mode, generation off	161
Heating off		162
Cold	Cold	76

5.24 Diagnostics, heat generation

For diagnostic purposes, the various setpoints, actual values, relay switching states and meter readings can be displayed.

Line no.	Operating line
86108699	

5.25 Diagnostics, consumers

For diagnostic purposes, the various setpoints, actual values, relay switching states and meter readings can be displayed.

Line no.	Operating line
87009099	

5.26 List of displays

Priorities are assigned to pending errors. From priority 6, alarm messages are delivered, which are used by remote supervision (OCI). In addition, the alarm relay will be set.

5.26.1 Error code

Error code	Description of error	Priority
0	No error	
10	Outside temperature sensor error	6
20	Boiler temperature 1 sensor error	9
25	Solid fuel boiler temperature (wood) sensor error	9
26	Common flow temperature sensor error	6
28	Flue gas temperature sensor error	6
30	Flow temperature 1 sensor error	6
31	Flow temperature 1 cooling, sensor error	6
32	Flow temperature 2 sensor error	6
38	Flow temperature primary controller sensor error	6
40	Return temperature 1 sensor error	6
46	Return temperature cascade sensor error	6
47	Common return temperature sensor error	6
50	DHW temperature 1 sensor error	9
52	DHW temperature 2 sensor error	9
54	DHW primary controller sensor error	6
57	DHW circulation temperature sensor error	6
60	Room temperature 1 sensor error	6
65	Room temperature 2 sensor error	6
68	Room temperature 3 sensor error	6
70	Buffer storage tank temperature 1 sensor error	6
71	Buffer storage tank temperature 2 sensor error	6
72	Buffer storage tank temperature 3 sensor error	6
73	Collector temperature 1 sensor error	6
74	Collector temperature 2 sensor error	6
81	Short-circuit LPB	6
82	LPB address collision	3
83	BSB wire short-circuit	6
84	BSB address collision	3
85	BSB radio communication fault	6
98	Extension module 1 fault (common fault status message)	6
99	Extension module 1 radit (common fault status message)	6
100	· · · · · · · · · · · · · · · · · · ·	3
100	2 clock time masters (LPB) Clock time master without backup (LPB)	3
		-
105	Maintenance message	5
109	Boiler temperature supervision	9
110	Lockout by SLT	9
117	Upper pressure limit (crossed)	6
118	Critical lower pressure limit (crossed)	6
121	Flow temperature 1 (HC1) supervision	6
122	Flow temperature 2 (HC2) supervision	6
126	DHW charging supervision	6
127	Legionella temperature not reached	6
131	Burner fault	9
146	Configuration error common message	3
171	Alarm contact 1 (H1) active	6
172	Alarm contact 2 (H2) active	6
173	Alarm contact 3 (EX2/230VAC) active	6
174	Alarm contact 4 (H3) active	6
176	Upper pressure limit 2 (crossed)	6
177	Critical lower pressure limit 2 (crossed)	6
178	Temperature limiter heating circuit 1	3
179	Temperature limiter heating circuit 2	3
207	Error, cooling circuit	6
217	Sensor error common message	6
217	Sensor error common message	6
218	Pressure supervision common message	6
241	Flow sensor, solar sensor error	6
242	Return sensor, solar sensor error	6
243	Swimming pool temperature sensor error	6

320	DHW charging temperature sensor error	6
321	Instantaneous DHW heater outlet temperature sensor error	6
322	Upper pressure limit 3 (crossed)	6
323	Critical lower pressure limit 3 (crossed)	6
324	BX same sensors	3
325	BX/extension module same sensors	3
326	BX/mixing valve group same sensors	3
327	Extension module same function	3
328	Mixing valve group same function	3
329	Extension module / mixing valve group same function	3
330	Sensor BX1 no function	3
331	Sensor BX2 no function	3
332	Sensor BX3 no function	3
333	Sensor BX4 no function	3
334	Sensor BX5 no function	3
335	Sensor BX21 no function	3
336	Sensor BX22 no function	3
337	Sensor BX1 no function	3
338	Sensor BX12 no function	3
339	Collector pump Q5 missing	3
340	Collector pump Q16 missing	3
341	Collector sensor B6 missing	3
342	Solar DHW sensor B31 missing	3
343	Solar integration missing	3
344	Solar controlling element buffer K8 missing	3
345	Solar controlling element swimming pool K18 missing	3
346	Solid fuel boiler pump Q10 missing	3
347	Solid fuel boiler comparison sensor missing	3
348	Solid fuel boiler address error	3
349	Buffer return valve Y15 missing	3
350	Buffer storage tank address error	3
351	Primary controller / system pump address error	3
352	Pressureless header address error	3
353	Cascade sensor B10 missing	3
357	Flow temperature cooling circuit 1 monitoring	6
366	Room temperature Hx sensor error	6
367	Relative room humidity Hx sensor error	6

5.26.2 Maintenance code

Maintenance code	Description of maintenance	Priority
1	Burner hours run exceeded	6
2	Burner starts exceeded	6
3	Maintenance interval exceeded	6
5	Water pressure heating circuit too low	9
	(dropped below lower pressure limit 1)	
18	Water pressure 2 heating circuit too low	9
	(dropped below lower pressure limit 2)	
10	Replace battery of outside sensor	6
21	Maximum flue gas temperature exceeded	6
22	Water pressure 3 heating circuit too low	9
	(dropped below lower pressure limit 3)	

5.26.3 Special operation code

Special operation code	Description
301	Manual operation
302	SLT test
303	Chimney sweep function
309	Simulation outside temperature
310	Alternative energy operation
314	Economy mode

CONTROLLERS CLIMA TOP (RVS63) CLIMA COMFORT (RVS43)

OEM MANUAL

6 The OEM settings in detail

6.1 Operator unit

Operation and display

Line no.	Operating line
21	Display special operation
	Off
	On
30	Save basic settings
	No
	Yes
31	Activate basic settings
	No
	Yes

Save basic settings The setting data of all operating levels are copied from the controller to the memory of the operator unit. This means that previous data in the operator unit are overwritten.

Activate basic settings

With the exception of the data listed below, the setting data of all operating levels are transferred from the memory of the operator unit to the connected controller. Previous setting data in the controller are overwritten.

i

The following operating lines will not be overwritten:

- Line no. Operating line 6600 Device address 6601 Segment address
- 6222 Device hours run

The following data will not be overwritten either: RF list, hours run / start counter, yield meter, maintenance meter, slave pointer, and error history.

6.2 Heating circuits

Mixing valve control

	Line no.			Operating line
	HC1	HC2	HC3P	
	835	1135		Mixing valve Xp
)	836	1136		Mixing valve Tn

Mixing valve XpBy setting the right proportional band, the control action of the mixing valve actuator is
matched to the behavior of the plant (controlled system).

Xp influences the P-action of the controller.

Mixing valve Tn By setting the right integral action time, the control action of the mixing valve actuator is matched to the behavior of the plant (controlled system).

Tn influences the I-action of the controller.

Mixing valve control

Line no.	Operating line	
942	Mixing valve Xp	
943	Mixing valve Tn	

Mixing valve XpBy setting the right proportional band, the control action of the mixing valve actuator is
matched to the behavior of the plant (controlled system).

Xp influences the P-action of the controller.

Mixing valve Tn By setting the right integral action time, the control action of the mixing valve actuator is matched to the behavior of the plant (controlled system).

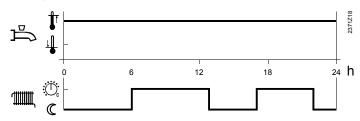
Tn influences the I-action of the controller.

6.4 DHW

Setpoints

1	Line no.	Operating line
	1614	Nominal setpoint max

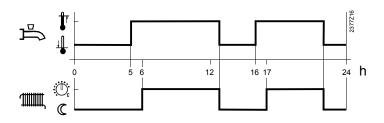
This operating line is used to limit the "Nominal setpoint" (operating line 1610) at the top.


Release

Line no.	Operating line
1620	Release
	24 h/day
	Time programs HCs
	Time program 4/DHW

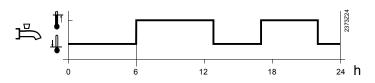
24 h/day

The DHW temperature is constantly maintained at the nominal DHW setpoint, independent of any time programs.


Example:

Time programs HCs

The DHW setpoint is switched between the nominal DHW setpoint and the reduced DHW setpoint according to the heating circuits' time programs. The first switch-on point of each period is shifted forward in time by one hour.


Example:

Time program 4/DHW

For DHW heating, time program 4 of the local controller is taken into consideration. The set switching times of that program are used to switch between the nominal DHW setpoint and the reduced DHW setpoint. This way, the DHW is heated independently of the heating circuits.

Example:

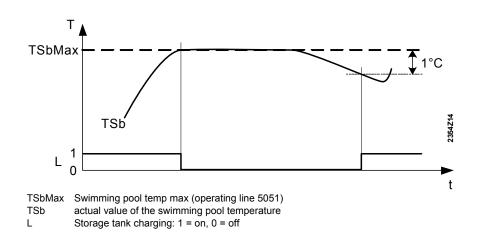
6.5 Pumps H

Pump Hx

Line no.		Operating line	
H1	H2	H3	
2008	2033	2044	H1/H2/H3 DHW charging priority Off ¦ On

H1/H2/H3 DHW charging priority

When using this setting, the connected pump H can be excluded from / included in the effect of DHW charging priority.

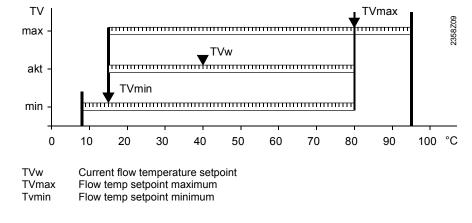

In the case of a ventilation system, for example, it is thus possible to ensure a constant supply of heat with no impact from the DHW charging priority.

6.6 Swimming pool

Line no.	Operating line
2070	Swimming pool temp max

Swimming pool temp max

If the swimming pool temperature reaches the temperature limit set here, the collector pump is deactivated. It is released again when the swimming pool temperature has dropped 1 °C below the maximum temperature limit.


6.7 Primary controller / system pump

Flow temperature setpoint limits

Line no.	Operating line		
2110	Flow temp setpoint min		
2111	Flow temp setpoint max		
2112	Flow setpoint, cooling min		

Flow temp setpoint minimum/maximum

These limit values can be used to define a temperature range for the heating flow temperature setpoint.

Flow setpoint, cooling min

This limit value can be used to define the low limit for the flow temperature setpoint for cooling.

Mixing valve control

Line no. Operating line

149/196

2130	Mixing valve boost
2131	Mixing valve cooling offset
2132	Actuator type
2133	Switching differential 2-pos
2134	Actuator running time
2135	Mixing valve Xp
2136	Mixing valve Tn

Mixing valve boostFor mixing, the actual value of the boiler flow temperature must be higher than the
required setpoint of the mixing valve flow temperature since otherwise that temperature
cannot be controlled. The controller generates the boiler temperature setpoint based on
the increase set here and the current flow temperature setpoint.

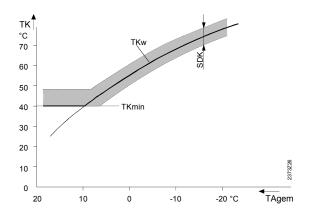
Mixing valve cooling
offsetTo ensure proper mixing, the actual flow temperature of the cooling aggregate must be
lower than the required mixing valve flow temperature setpoint. The cooling demand is
reduced by the value set here.

6.8 Boiler

Operating mode

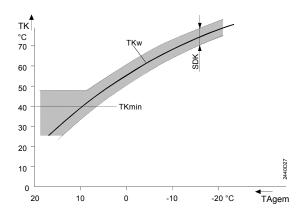
Line no.	Operating line
2200	Operating mode
	Continuous operation
	Automatically
	Auto, extended running time
2208	Full charging of buffer
	Off¦On

Operating mode


Continuous operation

The boiler is constantly released and the minimum boiler temperature maintained is the parameterized TKMin.

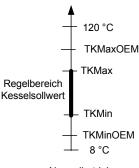
The boiler is only locked when all connected heating circuits are set to Protection mode and when there is no valid request.


Automatically

The boiler is released as soon as there is at least one valid temperature request. Once the boiler is released, the required minimum boiler temperature will always be maintained. The boiler is locked when no valid temperature request is active. This means that with this operating mode, the boiler setpoint will be maintained at the required minimum only if a temperature request is active.

The boiler is released as soon as there is at least one valid temperature request. When the boiler is released, the burner will be switched on when the boiler temperature drops below the request of the consumers. The required minimum boiler temperature is maintained only if the burner had to be switched on due to a request from one of the consumers. This means that since the boiler temperature can drop below its minimum, depending on the request, this operating mode leads to a smaller number of burner switching cycles and, therefore, longer burner on times.

Full charging of buffer Off: The boiler is not used for full charging of the buffer storage tank.


On: The boiler is included in the full charging of the buffer storage tank. When the function is active, the heat generator is not disabled until the buffer storage is fully charged.

Setpoints

Line no.	Operating line
2211	Setpoint min OEM
2213	Setpoint max OEM

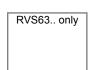
Setpoint minimum / maximum OEM

For this OEM boiler temperature limit control, limit values are defined for the upper and lower boiler temperature setpoints (TKMax and TKMin).

Normalbetrieb

Multistage burner

	Line no.	Operating line
RVS63 only	2220	Release integral stage 2
	2221	Reset integral stage 2


Integrals for stage 2

The temperature-time integral is a continuous summation of the temperature differential over time. In this case, the decisive temperature differential is the amount the temperature exceeds the burner's switch-on setpoint or switch-off setpoint.

Through the generation of the temperature-time integral it is not only the period of time that is considered, but also the extent of crossing. This means that when the crossing is significant, burner stage 2 is released or locked earlier than when the crossing is small.

Release integral burnerWhen, with burner stage 1, the temperature drops below the switch-on setpoint by the
release integral set here, the controller releases burner stage 2.

Reset integral burnerWhen, with burner stages 1 and 2, the temperature drops below the switch-off setpointstage 2by the reset integral set here, the controller locks burner stage 2.Modulating burner (damper actuator / UX)

i

Line no.	Operating line
2232	Damper actuator running time
2233	Modulating Xp
2234	Modulating Tn
2235	Modulating Tv

Damper actuator running time

To ensure that control of the modulating burner works optimally, the damper actuator running time must be set.

It must be observed that the running time to be set only relates to the range.

• Example

Running time of damper actuator $(90^\circ) = 120$ seconds Minimum position of damper actuator = 20° Maximum position of damper actuator = 80°

Hence, the air damper actuator running time effective for the control is as follows:

$120s * (80^\circ - 20^\circ)$	$\frac{0}{2} = 80s$
90°	003

Positioning pulses

For control operation, running time-dependent minimum positioning pulses are active that are defined as follows:

Actuator running time TS	Minimum pulse length
7.5 s – 14.5 s	Approx. 200 ms
15 s – 29.5 s	Approx. 300 ms
30 s – 59.5 s	Approx. 500 ms
60 s – 119.5 s	Approx. 1.10 s
>120 s	Approx. 2.20 s

Modulating Xp By setting the right proportional band, the control action of the modulating burner is matched to the plant's behaviour (controlled system).

Xp influences the controller's P-action.

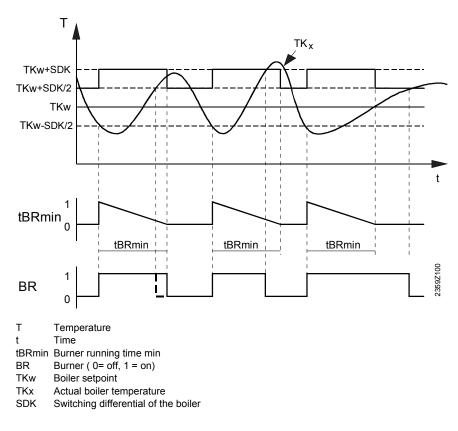
Modulating Tn By setting the right integral action time, the control action of the modulating burner is matched to the behavior of the plant (controlled system).

Tn influences the controller's I-action.

Modulating Tv By setting the right derivative action time, the control action is matched to the behavior of the plant (controlled system).

Tv influences the controller's D-action. With Tv = 0, the D-action is deactivated.

Boiler / burner control


Line no.	Operating line
2240	Switching differential of the boiler
2241	Burner running time min

Switching differential of the boiler

Burner running time min

The boiler temperature is controlled by a 2-position controller for which a switching differential can be set.

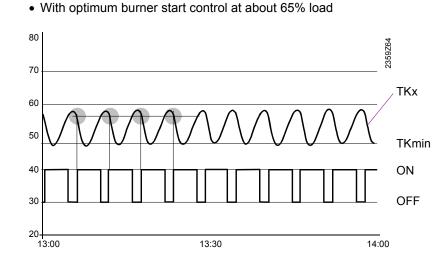
If a minimum burner running time is parameterized, the burner's switch-off point will be raised by half the boiler's switching differential within that minimum on time. If, within the minimum burner running time, the boiler temperature exceeds the setpoint by more than the entire switching differential, the burner will also be shut down before the minimum on time has elapsed. On completion of the minimum on time, the burner's switch-off point will be set to the boiler temperature setpoint plus half the switching differential. This function only acts on the first burner stage.

Overtemperature protection

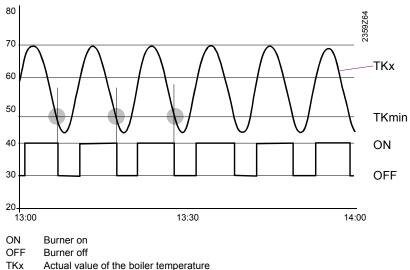
Line no.	Operating line
2250	Pump overrun time

Pump overrun time If the first burner stage is switched off, or if the boiler request becomes invalid, a forced signal is delivered during the parameterized pump overrun time. Consumer pumps do not switch off during the period of time such a forced signal is active.

Minimum limitation of the boiler temperature


Line no.	Operating line
2260	Prot boil startup consumers
2261	Prot boil startup boil pump
2262	Optimum start control

Protective start-up Below the minimum boiler temperature, protective boiler startup accelerates heating up of the boiler by switching off or reducing the consumer load, or by keeping the boiler pump deactivated, depending on the hydraulic circuit used.


Optimum start control When the function is activated (graph 1,2), the controller calculates the switch-on point for the burner, based on the boiler temperature gradient, thus enabling that the boiler temperature will not fall below the minimum level.

When the function is deactivated (graph 3), the controller will switch the burner on at TKmin.

- With optimum burner start control at about 35 % load

• Without optimum burner start control at about 35 % load

Tkmin Minimum limitation of the boiler temperature

Minimum limitation of the return temperature

	Line no.	Operating line
	2271	Return setpoint min OEM
	2272	Return influence consumers
Return setpoint min OEM		um limitation of the return temperature OEM is the lower limit value for the f the return temperature setpoint.
Return influence consumers	temperatureWith propis or remIn the case	pooler released, the return temperature falls below the set minimum e, a locking signal will be calculated. per pump circuits (heating circuit pump, DHW charging pump, external load) ains deactivated if the locking signal exceeds the respective threshold value se of mixing circuits, the flow temperature setpoint will be reduced according cking signal value

Return temperature minimum limitation mixing valve

Line no. 2282	Operating line Actuator running time
2283	Mixing valve Xp
2284	Mixing valve Tn
2285	Mixing valve Tv

Mixing valve Xp By setting the right proportional band, the control action of the mixing valve's actuator is matched to the behavior of the plant (controlled system).

Xp influences the controller's P-action.

• Example

In the case of a setpoint / actual value deviation of 20 °C, Xp = 20 produces a manipulated variable corresponding to the running time of the mixing valve's actuator (Tv = 0, Tn = maximum).

Mixing valve Tn By setting the right integral action time, the control action of the mixing valve's actuator is matched to the behavior of the plant (controlled system).

Tn influences the controller's I-action.

Mixing valve Tv

By setting the right derivative action time, the control action is matched to the behavior of the plant (controlled system).

Tv influences the controller's D-action. With Tv = 0, the D-action is deactivated.

Bypass pump

Line no.	Operating line
2290	Switching differential bypass pump

Switching differentialControl of the bypass pump "according to the boiler return temperature" is in the form of
2-position control for which a switching differential must be set.

Bypass pump

Control bypass pump
Parallel burner operation
Return temperature

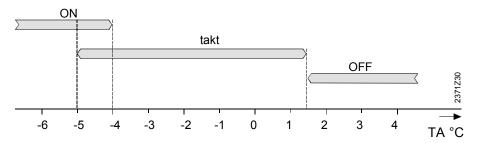
Control bypass pump The boiler bypass pump improves the circulation of water through the boiler, thus preventing the boiler temperature from falling below a certain level.

Parallel with the operation of the burner

The boiler bypass pump is switched on / off according to the burner's on / off signals. According to the boiler return temperature

The boiler bypass pump is switched on / off according to the minimum limitation of the boiler return temperature and the switching differential of the bypass pump.

Frost protection


Line no.	Operating line
2300	Frost prot plant boiler pump

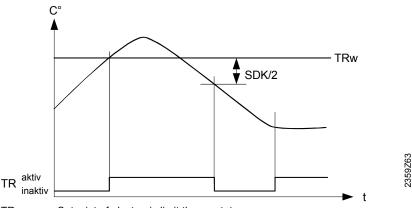
The boiler pump is activated, depending on the **current** outside temperature, although there is no request for heat.

i

Frost protection for the boiler operates only if frost protection for the plant on operating line 6120 is switched on.

Outside temperature (OT)	Pump	Graph
4 °C	Continuously on	ON
-5…1.5 °C	ON for 10 minutes at 6-hour intervals	Cycle (takt) OFF
1.5 °C	Continuously off	OFF

Electronic limit thermostat


1	Line no.	Operating line
	2310	Limit thermostat function

Limit thermostat function

The electronic limit thermostat monitors the boiler temperature (TKx) and cuts out if the set limit value (TR setpoint) is exceeded, causing the burner to shut down.

In normal control mode and for the relay test, the TR setpoint used is the boielr temperature's maximum limitation (TKMax) while the "adjustable" value TKMaxHand is used with manual control.

Parameter "Limit thermostat function" can be used to switch the limit thermostat on and off. But it is always active in manual control.

TRw Setpoint of electronic limit thermostat

The limit thermostat is activated when:

- The boiler temperature (TKx) exceeds the TR setpoint
- There is no boiler temperature signal, e.g. no signal from the sensor due to a shortcircuit.

TR is deactivated when:

 The boiler temperature drops by one half the boiler switching differential (SDK/2), but at least 2°K.

The electronic limit thermostat is integrated in burner relay control in a way that relays K4/K5 will immediately be deenergized when the limit thermostat becomes active (independent of control, relay test, and manual control). It is only during the SLT (safety limit thermostat) test that the electronic limit thermostat does not become active.

Monitoring the temperature differential

Line no.	Operating line
2315	Temp differential min
2316	Temp differential max

When using a speed-controlled boiler pump, the pump's speed is adjusted in a way that the difference between flow and return temperature will lie within that range. The pump's speed is significantly reduced only when the boiler delivers the required output.

Temp differential min Minimum boiler differential The "Minimum boiler differential" function is used to monitor the speed control of the boiler pump. When the actual boiler flow/return differential reaches the preset value, the boiler pump speed is not increased further. If the actual differential drops below the preset value, the speed is reduced. The function can be deactivated with the setting ---.

Temp differential max Maximum boiler differential The "Maximum boiler differential" function is used to monitor the speed control of the boiler pump. When the boiler flow/return differential reaches the preset value, the boiler pump speed is not increased further. If the actual differential exceeds the preset value, the speed is reduced.

The function can be deactivated with the setting ---.

Speed control

	Line no.	Operating line
RVS63 only	2322	Pump speed min
	2323	Pump speed max
	2324	Speed Xp
	2325	Speed Tn
	2326	Speed Tv

Pump speed minimum/maximum

Boiler pump speed range

The boiler pump motor speed is limited by a minimum and maximum permitted speed. To ensure that the pump operates reliably on start-up, it is operated at maximum speed for the first 10 seconds.

Boiler pump speed control The "Boiler pump speed control" function reduces the flow of water through the boiler water in order to achieve the specified boiler setpoint. The controller calculates the pump speed required to ensure that the boiler water volume is not reduced to the permissible minimum until the boiler reaches its full capacity. This prevents the boiler from reaching the setpoint at a reduced boiler capacity, causing the pump to continue to operate at reduced speed.

The pump speed is calculated by a PID controller.

With a low boiler capacity (actual capacity less than 66%) the speed-control setpoint is reduced by 10 K. If the boiler capacity rises above 66%, the pump-speed setpoint is increased, so that at 100% boiler capacity, the setpoint for the speed control calculation corresponds to boiler demand.

6.9 Cascade

Operating mode / strategy

Line no.	Operating line
3510	Lead strategy Late on, early off Late on, late off Early on, late off
3511	Output band min
3512	Output band max

Lead strategy

• Late on, early off

Additional boilers are switched on as late as possible (output band max) and switched off again as early as possible (output band max). This means that the **smallest possible number of boilers are in operation**, or additional boilers operate with short on times.

· Late on, late off

Additional boilers are switched on as late as possible (output band max) and switched off again as late as possible (output band min). This leads to the **smallest possible number of switch-on/off actions** for the boilers.

• Early on, late off

Additional boilers are switched on as early as possible (output band min) and switched off again as late as possible (output band min). This means that the **largest possible number of boilers are in operation,** or additional boilers operate with the longest possible on times.

Output band The values are used as switch-on or switch-off criteria in accordance with the selected lead strategy.

Control

Line no.	Operating line
3530	Release integral source seq
3531	Reset integral source seq
3534	Forced time basic stage

Integral source sequence The settings can be used as switch-on or switch-off criteria, in addition to the output band.

• Release integral source sequence

When, with the heat source currently in operation, the demand for heat cannot be met, the difference being the release integral set here, another boiler is switched on. When the value is increased, additional heat sources are switched on at a slower rate. When the value is decreased, additional heat sources are switched on at a faster rate.

• Reset integral heat source sequence

When, with the heat source currently in operation, the demand for heat is exceeded by the reset integral set here, the heat source with the highest priority is shut down. When the value is increased, heat sources operate for longer periods of time (in the case of surplus heat).

When the value is decreased, heat sources are switched off at a faster rate.

Forced time basic stage When switched on, every boiler operates with its basic stage for the period of time set here. The next stage is released only when this period of time has elapsed.

Minimum limitation of the boiler temperature

50	nei tempera		
	Line no.	Operating line	
	3550	Prot startup cascade pump	

Protective start-up The protective startup provided by the cascade pump accelerates heating up of the first boiler in the cascade below the minimum boiler temperature in that the cascade pump remains deactivated..

Minimum limitation of the return temperature

Line no.	Operating line
3561	Return setpoint min OEM
3562	Return influence consumers

Return setpoint min OEM The minimum limitation of the cascade return temperature (operating line 3560) can be adjusted by the OEM. The person using the heating engineer level can no longer set the minimum limitation of the cascade return temperature below the minimum value required for the boiler.

Return influenceIf, with the boilers released, the cascade return temperature drops below the minimumconsumerstemperature, a locking signal is calculated.

- In the case of pump circuits, the consumer pumps (heating circuit pump, DHW charging pump, ext. load) will be or will stay deactivated if the locking signal exceeds the respective threshold value
- In the case of mixing circuits, the flow temperature setpoint will be reduced according to the locking signal value

Return mixing valve

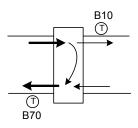
Line no.	Operating line
3570	Actuator running time
3571	Mixing valve Xp
3572	Mixing valve Tn

Actuator running time Setting the running time of the actuator used with the mixing valve.

Mixing valve Xp By setting the right proportional band, the control action of the mixing valve's actuator is matched to the behavior of the plant (controlled system).

Xp influences the controller's P-action.

Mixing valve Tn By setting the right integral action time, the control action of the mixing valve's actuator is matched to the behavior of the plant (controlled system). Tn influences the controller's I-action.


Monitoring the temperature differential

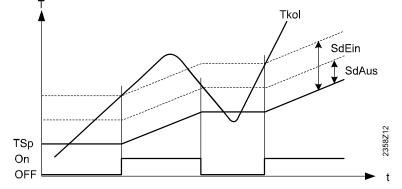
i

Line no.	Operating line
3590	Temp differential min

This function prevents excessive cascade return temperatures and improves the cascade's switch-off behavior.

If the temperature differential between flow and return sensor (B10, B70) becomes smaller than the set minimum temperature differential (operating line 3550), one of the heat sources is switched off as early as possible, independent of the selected lead strategy.When the

temperature differential is sufficient again, the selected lead strategy is resumed. Switching off due to the minimum temperature differential does not apply to the last heat source in the cascade.


6.10 Solar

Charging controller (dT)

i

Line no.	Operating line
3813	Temp diff ON buffer
3814	Temp diff OFF buffer
3816	Temp diff ON swi pool
3817	Temp diff OFF swi pool

Setting - - - adopts the general temperature differential of solar operating lines 3810 and 3811.For charging via the heat exchanger, a sufficient temperature differential is required, and the minimum charging temperature of the collector must be reached.

 TKol
 Collector temperature

 On / Off
 Collector pump

 SdOn
 Temp differential on buffer / swimming pool

 SdOff
 Temp differential off buffer / swimming pool

 TSp
 Storage tank / swimming pool temperature

Start function

Line no.	Operating line
3830	Collector start function
3832	Collector start function on
3833	Collector start function off

Collector start function

Speed Xp and integral

If the temperature at the collector (especially in the case of vacuum tubes) cannot be correctly acquired when the pump is deactivated, the pump can be activated from time to time.

Speed control

action time Tn

RVS63.. only

Line no.Operating line3872Speed Xp3873Speed Tn

The charging setpoint of the tank with first-priority charging and the collector temperature are both used for speed control. A PI-controller calculates the speed required to ensure that the collector temperature is 2K below the switch-on temperature. If the collector temperature rises due to increased solar radiation, the speed is increased. If the collector temperature drops below this setpoint, the speed is reduced. Limit parameters can be set to define a maximum and minimum pump speed. The PI controller can be influenced by parameters Xp and Tn. The controller has a dead band of +/- 1K.

The resulting speed is delivered at the speed output selected during configuration (Triac AX3 or 0..10V).

If the charging priority is changed, the controller regulates the speed in accordance with the new charging setpoint.

```
161/196
```

6.11 Solid fuel boiler

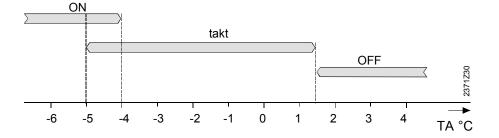
Overtemperature protection

Line no.	Operating line
4140	Pump overrun time
4141	Excess heat discharge

Pump overrun time If the boiler temperature drops below the minimum temperature differential or the minimum setpoint, the boiler pump keeps running for the parameterized overrun time.

Excess heat discharge If the boiler temperature reaches the adjusted maximum value, excess heat discharge becomes active. This forces the connected consumers to draw heat from the boiler. At the same time, the boiler pump will be switched on.

Frost protection


Line no.	Operating line
4170	Frost prot plant boiler pump

The boiler pump is activated depending on the **current** outside temperature, although there is no request for heat.

i

Frost protection for the solid fuel boiler operates only if frost protection for the plant on operating line 6120 is switched on.

Outside temperature (OT)	Pump	Graph
4 °C	Continuously on	ON
-51.5 °C	ON for 10 minutes at 6-hour intervals	Cycle (takt)
1.5 °C	Continuously off	OFF

Operating line

Automatic heat generation lock

Line no.	Operating line
4721	Auto heat generation lock SD

Automatic heat generation lock ensures a temporary hydraulic disconnection of heat source and buffer storage tank. The heat sources will be put into operation only if the buffer storage tank is no longer able to satisfy the current demand for heat. The switching differential can be adjusted.

Auto heat generation lock SD Min st tank temp heat mode

If the actual storage tank temperature falls below this level, the heating circuits are shut down.

Stratification/decharging protection

Line no

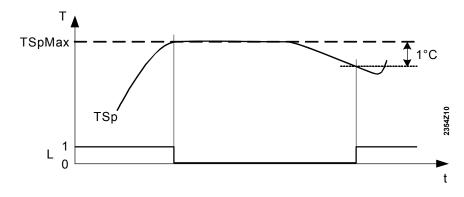
Line no.	Operating line
4740	Stratif prot temp diff max
4743	Stratif prot Vor'schauzeit
4744	Stratif prot integr action time
4746	DHW protection combined
	Off¦On
between the o valves for the When the fun- that where po The function i If the tempera drops below t differential, th (reduction in t minutes, the l ensures that t that there is n Note: If a prim	brage tank anti-stratification function provides for hydraulic balancing consumers and the generator without the need for additional shut-off buffer storage tank. ction is active, the volume of water on the consumer side is adjusted so assible, the addition of colder water from the buffer storage tank is avoide s only active if at least one of the heat generators is delivering heat. ature measured by the common flow sensor (B10 downstream of buffer) he heat generation temperature by more than the preset temperature e volume of water on the consumer side is reduced via locking signals the setpoints). If the locking signal achieves 100% for longer than 10 ocking signal is deleted and re-calculated after a delay of 1 minute. This he volume of water on the consumer side is not throttled altogether so o flow through sensor B10. hary controller is configured downstream of the buffer storage tank, and if 0 connected, then the function is calculated with the connected B15.

DHW protection combined For a combined storage tank without a charging pump/diverting valve Q3, the heat demand for room heating (lower part of tank) cannot be supplied without mixing with the DHW section (upper part of tank). It is therefore important to ensure that the water flowing into the top part of the storage tank is not too cold. The function can be activated / deactivated.

Off:

Function is deactivated. The heat demand for room heating is not increased. Hydraulic integration of the combined storage tank maintains DHW stratification.

On:


The function is active. The room heating demand is increased for DHW protection. The demand signal to the heat generator is increased so that is at least equivalent to the DHW temperature (B3). At the most, the low temperature limit control remains active only until the nominal DHW setpoint is reached.

Overtemperature protection

4751		Storage tank temp max
	Line no.	Operating line
· · · .		

Storage tank temp max

If the storage tank reaches the maximum storage tank temperature set here, the collector pump will be deactivated. It will be released again when the storage tank temperature has dropped 1 °C below the maximum storage tank temperature.

TSpMaxStorage tank temp max (operating line 5051)TSpActual value of the storage tank temperatureLStorage tank charging: 1 = on, 0 = off

Full charging

Line no.	Operating line		
4810	Full charging		
	Off Heating mode Always		
4811	Full charging temp min		
4813	Full charging sensor		
	With B4 ¦ With B42/B41		

The "buffer storage tank full charging" function ensures that regardless of the automatic heat generation lock, the released heat sources are not disabled until the buffer storage tank is fully charged.

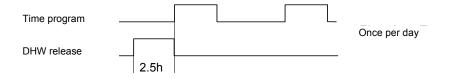
For full charging, the function "Full charging, buffer" (operating line 2208) must be enabled for the heat sources selected for this purpose.

When the function is active, the heat sources specified here for the full charging function are not disabled either until the full charging setpoint is reached or until the boilers have been switched off in accordance with the burner control function.

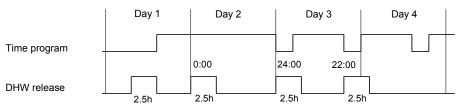
Full charging	Off: The full charging function is deactivated. Heating mode: Full charging is active when there is a valid heat demand and the automatic heat generation lock disables the heat generators on the basis of the buffer temperature. The function is deactivated when the buffer storage tank reaches the required temperature, as measured by the sensor selected for the charging function. Always: Full charging is active when the automatic heat generation lock disables the heat generators on the basis of the buffer temperature or when the heat demand ceases to be valid. The function is deactivated when the buffer storage tank reaches the required temperature, as measured by the sensor selected for the charging function.
Full charging temp min Full charging sensor	The buffer storage tank is charged at least to the preset value. With B4: Sensor B4 is used for the full charging function. With B42/B41 : For the full charging function, sensor B42 is used, and if this is not available, then B41.

6.13 DHW storage tank

Release

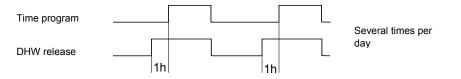

Line no.	Operating line
5010	Charging
	Once/day Several times/day

Charging


Selection of charging "Once/day" or "Several times/day" is active only if DHW release is set according to the time programs of the heating circuits

Once / day

Release of DHW charging is given 2.5 hours before the <u>first</u> heat request fom the heating circuit is received. Then, the reduced DHW setpoint applies for the whole day.



In the case of continuous heating (with no setback periods), release of DHW charging is given at 0:00. The same rule also applies if the first request for heat from the heating circuit is received before 02:30. If a request for heat is received at midnight, DHW charging is released after the first setback period, but no earlier than 2.5 hours before midnight.

Several times / day

When selecting "Several times/day", release of DHW charging is put forward in time by 1 hour against the periods of time the heating circuit calls for heat, and is then maintained during those periods of time.

Charging control

Line no.	Operating line	
5024	Switching differential	

Switching differential

If the DHW temperature is lower than the current setpoint minus the switching differential set here, DHW charging will be started. DHW charging will be terminated when the temperature reaches the current setpoint.

i

i

When DHW heating is released for the first time in a 24-hour period, forced charging will be initiated. DHW charging is also started when the DHW temperature lies within the switching differential, provided it does not lie less than K below the setpoint.

Charging time limitation

Line no.	Operating line	
5030	Charging time limitation	

Charging time limitation During DHW charging, space heating may obtain no or too little energy, depending on the selected charging priority (operating line 1630) and the type of hydraulic circuit. For this reason, it is often practical to set a time limit to DHW charging.

- - -

Charging time limitation is deactivated. The DHW is heated up to the nominal setpoint, even if space heating cannot draw sufficient amounts of heat for a certain period of time.

10 - 600

DHW charging is stopped after the set period of time in minutes and then locked for the same period of time before it is resumed. During this period of time, the heat produced by the boiler is made available for space heating. This cycle is repeated until the nominal DHW setpoint is reached.

When space heating is switched off (summer operation, Eco function, etc.), DHW charging will not be stopped, independent of the selected setting.

Discharging protection

Line no.	Operating line	
5040	Discharging protection	

Discharging protection This function ensur

This function ensures that the DHW charging pump (Q3) will be activated only when the boiler temperature is high enough.

• With sensor

The charging pump will be activated only when the boiler temperature reaches the level of the DHW temperature plus one half the charging boost. If, during charging, the boiler temperature drops to a level below the DHW temperature plus 1/8 the charging boost, the charging pump will be deactivated again. If 2 DHW sensors are parameterized for DHW charging, the lower temperature is used for the discharging protection function (usually sensor B31).

With thermostat The charging pump will be activated only when the boiler temperature lies above the nominal DHW setpoint. If, during charging, the boiler temperature drops below the nominal DHW temperature minus the DHW switching differential, the charging pump will be deactivated again.

Off

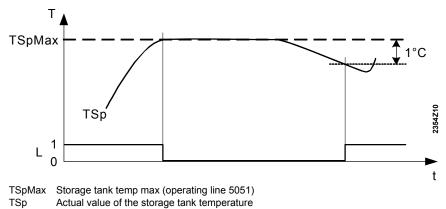
•

Function is deactivated.

Always

The function is always active.

Automatically


The function is active only if the heat source is not able to deliver heat, or is not available (fault, heat generation lock).

Overtemperature protection

Line no.	Operating line	
5051	Storage tank temp max	

Storage tank temp max If the storage tank reaches the maximum storage tank temperature set here, charging is aborted. It will be released again when the storage tank temperature has dropped 1 °C below the maximum storage tank temperature.

i The protective collector overtemperature function can reactivate the collector pump until the storage tank's safety temperature is reached.

Storage tank charging: 1 = on, 0 = off

DHW push

Line no.	Operating line	
5070	Automatic push	
	Off	
	On	
5071	Charging prio time push	

Automatic push

The DHW push can be triggered either manually or automatically. In that case, the DHW is heated up once to the nominal setpoint.

Off

L

The DHW push must be triggered manually.

On

If the DHW temperature falls below the reduced setpoint (operating line 1612) by at least 2 switching differentials (operating line 5024), one-time charging to the nominal DHW setpoint (operating line 1610) will take place again.

The automatic DHW push only works when the DHW operating mode is activated.

Charging prio time push

In the case of a DHW push, the DHW storage tank is charged with absolute priority for the period of time set here.

Excess heat draw

Line no.	Operating line		
5085	Excess heat draw Off On		

Excess heat draw

Excess heat draw can be triggered by the following functions:

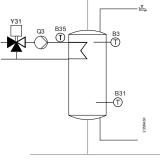
- Inputs H1, H2, H3 or EX2

- Storage tank recooling

Solid fuel boiler excess heat draw

When dissipation of excess heat is activated, it can be drawn by space heating. This can be adjusted separately for each heating circuit.

Speed-controlled pump

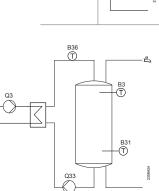

Speed control

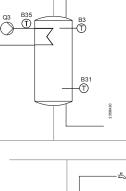
RVS63.. only RVS63.. only

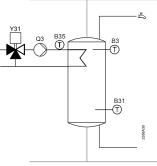
Line no.	Operating line		
5103	Speed Xp		
5104	Speed Tn		
Charging pump Q3 speed control			

Heat exchanger in storage tank and sensor B36 in the return.

The controller calculates the charging-pump speed required to ensure that the return temperature measured by sensor B36 is 2K above the storage tank temperature (B3).




Heat exchanger in storage tank, with primary controller.


The controller calculates the charging-pump speed required to ensure that the DHW setpoint + charging increase measured at sensor B35 is achieved.

Heat exchanger outside the storage tank and sensor B36 in flow (part-schematics 22, 23)

The controller calculates the charging-pump speed required to ensure that the charging temperature measured by sensor B36 is 2K above the DHW setpoint.

Rev. 1 (09/09) - EN

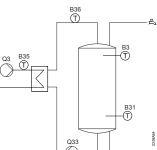
Heat exchanger outside storage tank, with primary controller.

The controller calculates the charging-pump speed required to ensure that the charging temperature measured by sensor B35 is 2K above the DHW setpoint. In this case the primary controller sensor B35 must be located in the intermediate circuit. If a B36 is also connected, B35 must be positioned as the primary control sensor. In this case, the controller calculates the speed required to ensure that the DHW setpoint + charging increase measured by sensor B35 is achieved.

Speed control of intermediate circuit pump Q33 speed

The controller calculates the speed of the intermediate-circuit pump required to ensure that the return temperature measured by sensor B36 is 2K above the DHW setpoint. If no B36 is connected the calculation is based on

If no valid sensor is connected, the pump speed is not controlled.


Operating line

Mixing valve boost

sensor B35.

Line no.

5120

вз6 (Т)

Q33

굔

вз -(Т)

B31 Õ

Mixing valve precontrol

	5124	Actuator running time	
	5125	Mixing valve Xp	
	5126	Mixing valve Tn	
Mixing valve boost	To ensure proper mixing valve flow temperature control, the flow temperature must be higher than the demanded setpoint of the mixing valve flow temperature. The value set here is added to the request.		
Actuator running time	Setting the running time of the actuator used with the mixing valve.		
Mixing valve Xp	By setting the right proportional band, the control action of the mixing valve's actuate matched to the behavior of the plant (controlled system). Xp influences the controller's P-action.		
Mixing valve Tn	By setting the right integral action time, the control action of the mixing valve's actuate is matched to the behavior of the plant (controlled system).		
Transfer	Tn influenc	es the controller's I-action.	
Tansier	Line no.	Operating line	
	5130	Transfer strategy	
		Always DHW release	
	5131	Comparison temp transfer DHW sensor B3 DHW sensor B31	
Transfer strategy	Transfer is permitted either always or at the release times set (operating line 1620).		
Comparison temp transfer	r For the transfer, the respective DHW sensor can be selected to get a comparative temperature.		

169/196

6.14 Instantaneous DHW heater

Mixing valve control

Line no.	Operating line
5545	Mixing valve Xp
5546	Mixing valve Tn
5547	Mixing valve Tv

Mixing valve Xp By setting the right proportional band, the control action of the mixing valve's actuator is matched to the behavior of the plant (controlled system).

Xp influences the controller's P-action.

Mixing valve TnBy setting the right integral action time, the control action of the mixing valve's actuator
is matched to the behavior of the plant (controlled system).

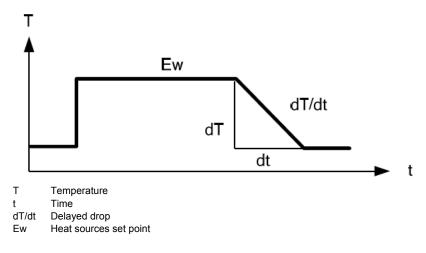
Tn influences the controller's I-action.

Mixing valve Tv By setting the right derivative action time, the control action is matched to the behavior of the plant (controlled system).

Tv influences the controller's D-action. With Tv = 0, the D-action is deactivated.

6.15 Configuration

Building and room model


C					
	Line no.	Operating line			
	6112	Gradient room model			
Gradient room model	raise the ten The setting i	odel gradient gives the period of time in minutes room heating needs to nperature by 1 °C. The settings made applies to all circuits. s used to calculate the fictive room temperature of rooms that have no rature sensor installed (operating lines 8742, 8772, and 8802).			
Setpoint compensation					
	Line no.	Operating line			
RVS43 only	6116	Time constant setp compens			
	6117	Central setp compensation			
	6118	Setpoint drop			
		delay			
Time constant setp compens	If required, the adjusted.	he filter time constant (B10) of the central setpoint compensation can be			
Central setp	Central setn	oint compensation matches the setpoint of the heat source to the required			
•	central flow temperature.				
compensation		imits the maximum readjustment, even in cases where grater adaptations			
i	This functior	n can only be implemented when using the common flow sensor (B10).			

170/196

Setpoint drop delay

This prevents multistage heat sources from switching off too quickly, or modulating heat sources from switching off instantly due to their output control.

As a result, the heat sources do not cool down since a demand for heat still exists, which means that they will resume operation a short time later.

The delayed drop acts only in the case of a setpoint jump, but not when the request for heat no longer exists.

Pressure acquisition H1, H2 and H3

Pressure acquisition H1, H						
	Line no.			1	Operating line	
	H1	H2	H3			
	6140 6				Water pressure max	
	6141 6				Water pressure min	
	6142 6	6152	6182		Water pressure critical min	
			RVS63	3 only		
Water pressure max	If the pressure acquired at input H1, H2 or H3 exceeds the limit value set here, an					
	appropriate error message will be delivered.					
	appropri	late e		Joougo		
	117: W	Vater	pressu	re too l	high	
	176: W	Vater	pressu	re 2 to	o high	
	322: W	Vater	pressu	re 3 to	o high	
			•			
	-		e drops	s below	the limit value by one switching differential, the error will b	
	canceled	d.				
Water pressure min	If the pressure acquired at input Hx drops below the set limit value (parameter "Water					
	pressure min"), the appropriate maintenance alarm will be delivered.					
	E. \A	Notor		ra taa l		
	5: Water pressure too low					
	18: Water pressure 2 too low					
	22: W	Vater	pressu	re 3 to	o low	
	If the nre	essur		eds the	limit value by one switching differential, the maintenance	
	alarm wi					
			cancei	. .		
	16 41					
Water pressure critical min						
	appropriate error message will be delivered and both burner stages immediately shut					
	down.					
	118: Water pressure too low					
	177: Water pressure 2 low					
	•					
	323: Water pressure 3 low					
	When the pressure exceeds the limit value by a switching differential, the error is					
	canceled	•				
	Line no.		Opera	ting line		
	0000		Devi	-		

Line no. 6222	Operating line Device hours run
6222	Device nours run

This indicates the total number of hours run since the controller was first commissioned.

6.16 LPB system

Error/maintenance/alarms

Line no.	Operating line
6610	Display system messages
6612	Alarm delay

Display system messages This setting enables system messages transmitted via LPB to be suppressed at the connected operator unit.

Alarm delay

Delivery of the alarm to the OCI can be delayed in the basic unit by setting a delay. This ensures that unnecessary notifications of a service center resulting from short-time errors (e.g. temperature limiter cut out, communication error) can be prevented. It is to be noted, however, that errors occurring for a short period of time, and reoccurring constantly and rapidly, will also be filtered.

Central functions

Line no.	Operating line
6630	Cascade master
	Always ¦ Automatically

When creating a cascade, the controller having address 1 is assigned the role of the cascade master. That controller then activates the required functionality and displays the additional operating menus including the cascade-related parameters. The identification as the cascade master is made either automatically, depending on the selection, or can be ready assigned by selecting "Always".

i

In the case of a cascaded plant, it is recommended to select "Always" on the cascade master. This selection ensures that the cascade operating menus and common functions (e.g. common return temperature control) will not be lost should a power failure occur.

6.17 Errors

History 1..10

Line no.	Operating line
6820	Reset history
	No
	Yes

Reset history

The error history with the last 10 errors will be deleted.

6.18 Diagnostics, consumers

Heating circuit 1, heating circuit 2, heating circuit P

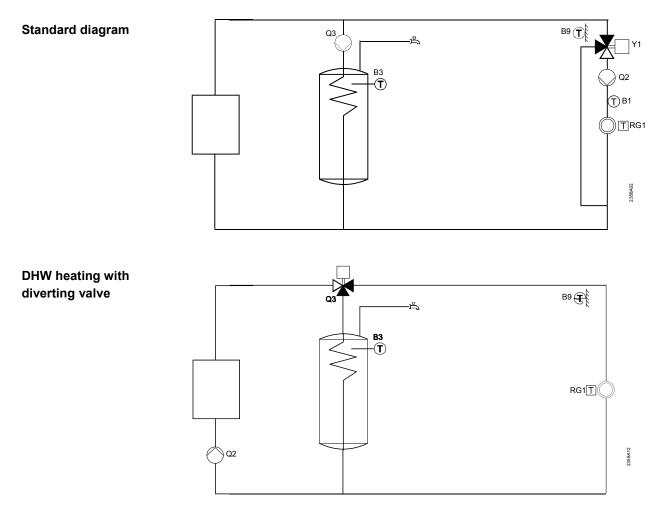
Line no.	Operating line
8742	Room temp 1 model
8772	Room temp 2 model
8802	Room temp P model

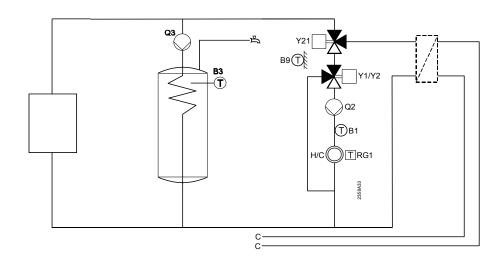
 Room temperature 1 / 2 /
 The room model calculates a fictive room temperature for rooms that have no room

 P model
 temperature sensor. The value calculated for each heating circuit is indicated on these operating lines.

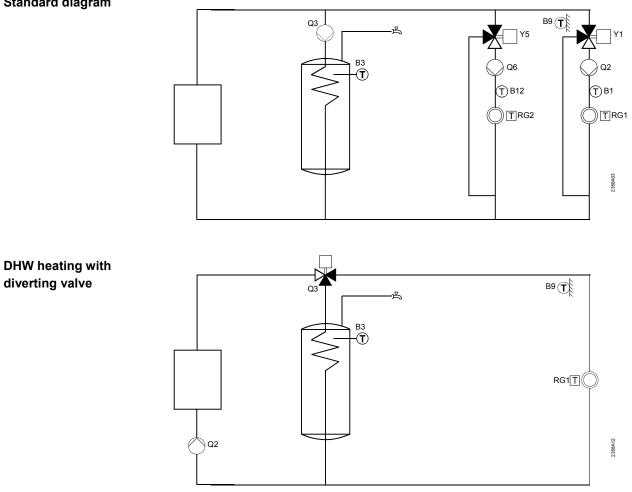
This allows boost heating, quick setback and optimum start and stop control to be implemented with no need for using a room temperature sensor.

The calculation takes into account the attenuated outside temperature (operating line 8703), the room model gradient (operating line 6112) for switching to a higher setpoint and the building's time constant (operating line 6110) for switching to a lower setpoint.


7 Plant diagrams

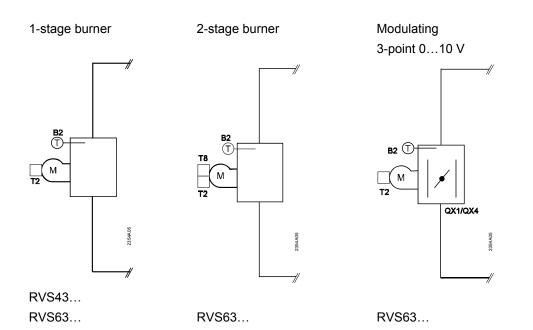

The various applications are shown in the form of basic diagrams and extra functions. The basic diagrams show possible applications that can be implemented without the use of multifunctional outputs.

7.1 Basic diagrams

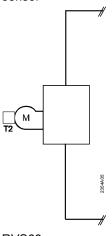

The basic diagrams are examples of plant that can be implemented with standard outputs requiring only a few settings.

7.1.1 Basic diagram RVS43.

7.1.2 Basic diagram RVS63.



Standard diagram

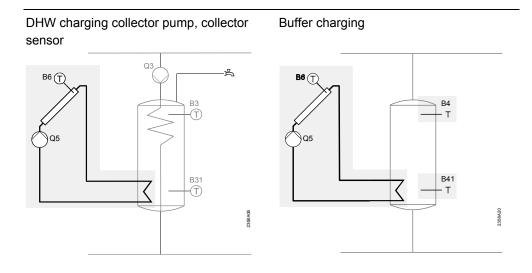

USER & OEM MANUAL

7.2 Versions of heat sources

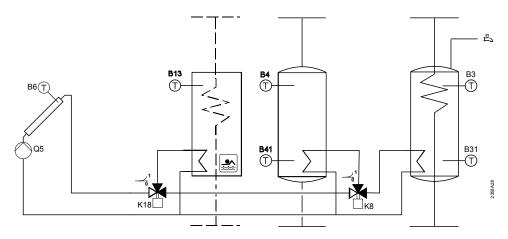
The heat generation options can be selected via the "Configuration" operating page on operating line 5779 "Source type".

Burner without boiler sensor

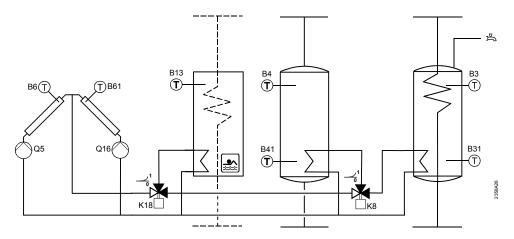
RVS63...

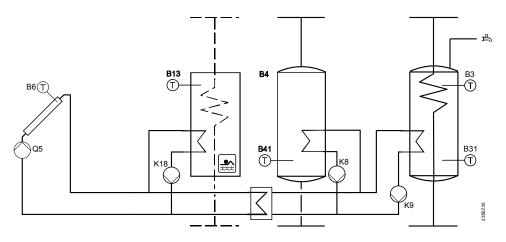

7.3 Extra functions in general

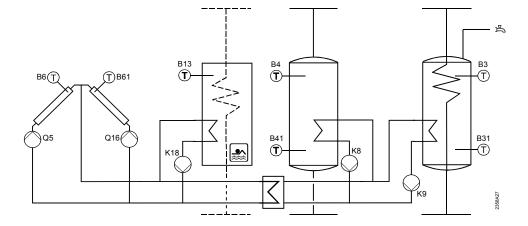
The extra functions can be selected via operating page "Configuration" and complement the basic diagrams of the respective controllers.

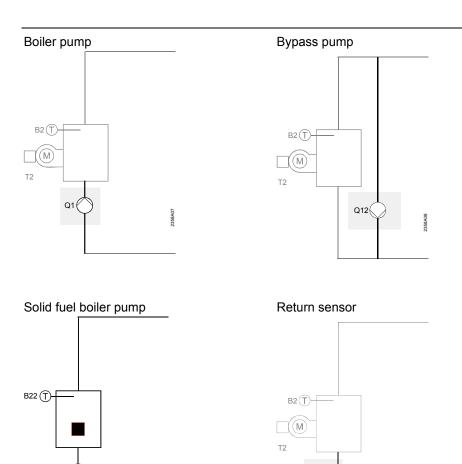

The type and number of extra functions that can be applied depend on the multifunctional outputs and inputs QX... or BX...

Depending on the type of application, the use of extra functions necessitates a number of appropriate operating line settings.



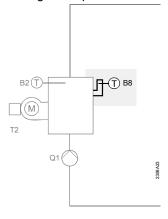

Solar storage tank and swimming pool charging via diverting valves with 1 collector


Solar storage tank and swimming pool charging via diverting valves with 2 collectors



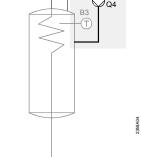
Solar storage tank and swimming pool charging via charging pumps with 1 collector

Solar storage tank and swimming pool charging via charging pumps with 2 collectors

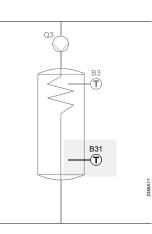

в7 🛈

2358A13

Flue gas temperature sensor


2358A22

Q10 (

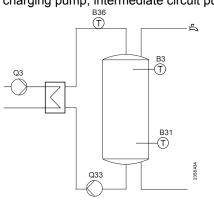


DHW storage tank (DHW)

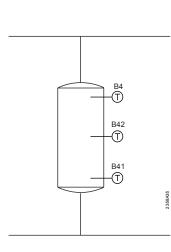
DHW circulating pump DHW el imm heater Q3, B39 (T) 占 Q4

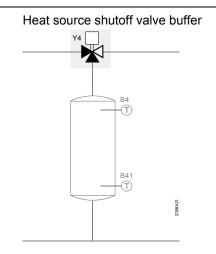
2nd DHW sensor

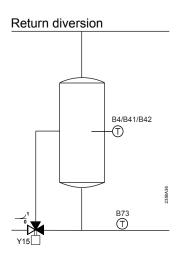
DHW tank with external heat exchanger, charging pump, intermediate circuit pump


÷Þ

2358A05

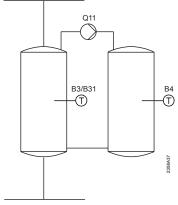

вз -(Т)

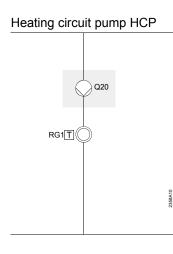

Q3

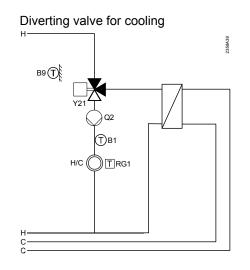

Z K6



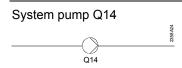
Buffer storage tank



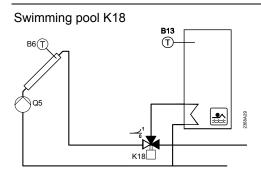




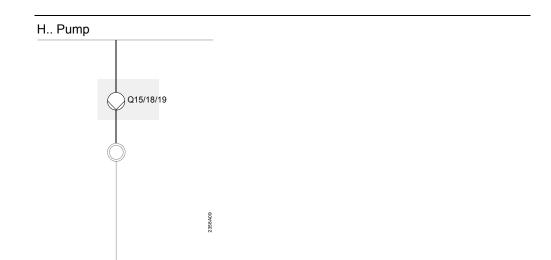
Storage tank charge transfer

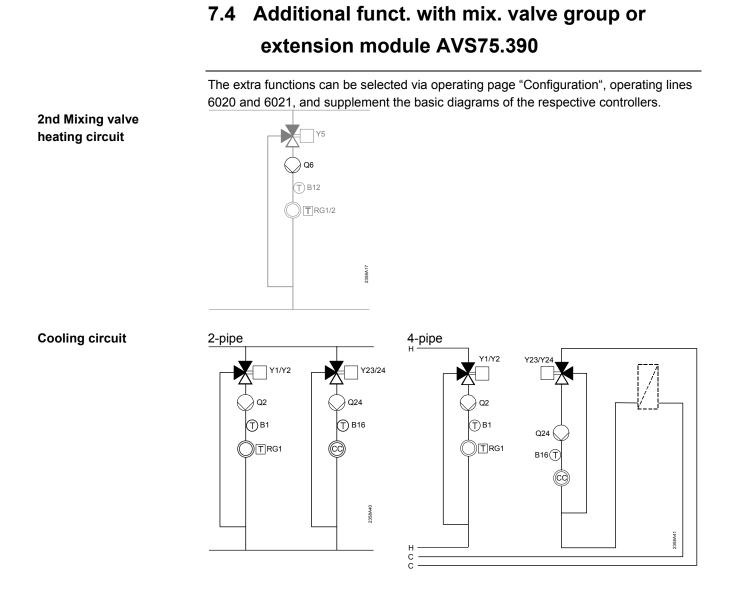


Heating/cooling circuit

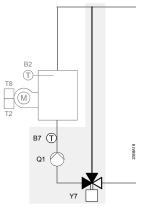


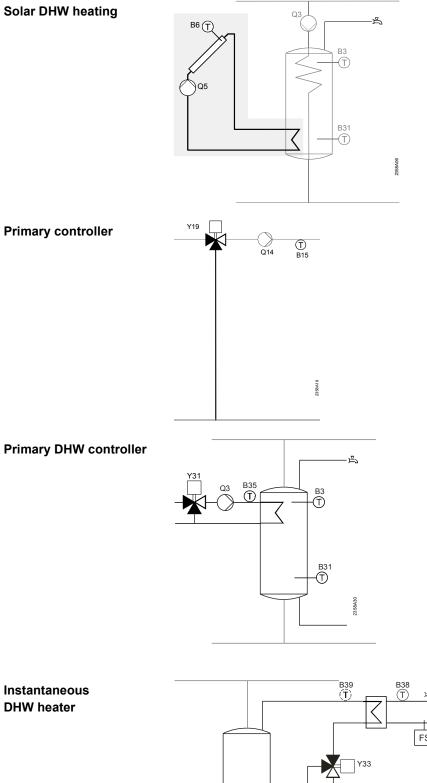

Heat converter

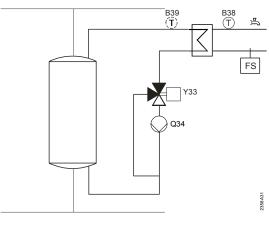

Swimming pool



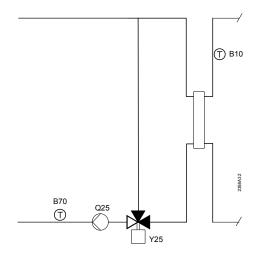
Pressureless header




Extra functions



Return temp controller



184/196

Return controller cascade

Diagram	Function					
Diagram	Function					
T2	Burner 1st stage					
T 0	Release modulating burner					
Т8	Burner 2nd stage					
	Air damper modulating burner opening					
Q1	Boiler pump					
Q2	1st heating circuit pump					
Q3	DHW charging pump / diverting valve					
Q4	circulating pump					
Q5	Collector pump					
Q6	2nd heating circuit pump					
Q10	Solid fuel boiler pump					
Q11	Storage tank charging pump					
Q12	Bypass pump					
Q14	System pump					
Q15/18/19	H1/2/3 pump					
Q16	Collector pump 2					
Q20	Heating circuit pump HCP					
Q24	Cooling circuit pump					
Q25	Cascade pump					
Q33	DHW intermediate circuit pump					
Q34	Instantaneous heater pump					
Y1	1st Heating circuit mixing valve					
Y4	Heat source shutoff valve					
Y5	2nd Heating circuit mixing valve opening					
Y6	2nd Heating circuit mixing valve closing					
Y7	Maintained boiler return temperature					
Y15	Buffer return valve					
Y19	Primary controller					
Y21	-					
Y25	Maintained boiler return temperature valve					
	-					
Y26						
	-					
Y31	0					
	. ,					
	1 0					
	-					
	-					
Y1 Y4 Y5 Y6 Y7 Y15 Y19 Y21 Y25	1st Heating circuit mixing valve Heat source shutoff valve 2nd Heating circuit mixing valve opening 2nd Heating circuit mixing valve closing Maintained boiler return temperature					

Legend low-voltage

B1	Flow temperature sensor HK1
B12	Flow temperature sensor HK2
B13	Swimming pool sensor
B2	Boiler temperature sensor TK1
B22	Solid fuel boiler sensor
B3	DHW sensor top
B31	2nd DHW sensor bottom
B35	DHW flow temperature sensor
B36	DHW charging sensor
B38	DHW temperature outlet sensor
B4	Buffer storage tank temperature sensor
B41	Buffer storage tank temperature sensor
B42	Buffer storage tank temperature sensor
B15	Flow sensor primary controller
B39	DHW circulation sensor B39
B6	Collector sensor
B61	Collector sensor 2
B7	Return sensor
B70	Cascade return sensor
B73	Primary circuit return sensor
B8	Flue gas temperature sensor
B9	Outside sensor.
B10	Common flow sensor
RG1	Room unit 1
RG2	Room unit 2
F _S	Flow switch

8 Technical data

8.1 Basic units RVS...

Rated frequency50/60 HzPower consumptionRVS43.143: 8.5 VARVS63.243: 10 VARVS63.243: 10 VARVS63.283: 11 VARVS63.283: 11 VAFusing of supply linesmax. 10 AT					
Power consumption RVS43.143: 8.5 VA RVS63.243: 10 VA RVS63.283: 11 VA Fusing of supply lines max. 10 AT					
RVS63.243: 10 VA RVS63.283: 11 VA Fusing of supply lines max. 10 AT					
Fusing of supply lines max. 10 AT					
	RVS63.283: 11 VA				
Wiring of terminals Power supply and outputs solid wire or stranded wire (twisted or	or with				
ferrule):					
1 core: 0.52.5 mm ²					
2 cores: 0.5. mm ² 1.5 mm ²					
3 cores: Not permitted					
Functional data Software class A					
Mode of operation to EN 60 730 1.B (automatic)					
Inputs Digital inputs H1 and H2 safety extra low-voltage for potential	free				
low-voltage contacts:					
voltage with contact open:					
DC 12 V					
current with contact closed:					
DC 3 mA					
Analog input H1, H2 protective extra low-voltage operatin	g				
range: DC (010) V	range: DC (010) V				
internal resistance: > 100 kΩ	internal resistance: > 100 k Ω				
Mains voltage S3, 4 and EX2 AC 230 V (±10 %)	AC 230 V (±10 %)				
internal resistance: > 100 kΩ	internal resistance: > 100 k Ω				
Sensor input B9 NTC1k (QAC34)	NTC1k (QAC34)				
Sensor inputs B1, B2, B3, B12, BX1, BX2,					
BX3, BX4 NTC10k (QAZ36, QAD36)	NTC10k (QAZ36, QAD36)				
Sensor inputs BX1BX4 PT1000 (optionally for collector and	flue				
gas sensor)					
Perm. sensor cables (copper)	2				
	mm ²				
Max. length: 20 40 60 80 120	m				
Outputs Relay outputs					
	AC 0.022 (2) A				
	15 A während ≤1 s				
Max. total current (of all relays) AC 10 A	utro utro)				
Rated voltage range AC (24230) V (for potential-free ou	ilpuis)				
Triac output QX3 (custom solution only)					
Rated current range					
	AC 0.052 (2) A				
	AC 0.050.4 (1) A				
	4 A tor ≤1 s				
Max. switch-on current 4 A for ≤1 s					
Max. switch-on current4 A for ≤ 1 s					
Max. switch-on current 4 A for ≤1 s Analogous to output U1 output is short-circuit-proof					
Max. switch-on current4 A for \leq 1 sAnalogous to output U1output is short-circuit-proofOutput voltage $U_{out} = 0 \dots 10.0 V$					
Max. switch-on current $4 \text{ A for } \le 1 \text{ s}$ Analogous to output U1output is short-circuit-proofOutput voltage $U_{out} = 0 \dots 10.0 \text{ V}$ Current rating $\pm 2 \text{ mA RMS}; \pm 2.7 \text{ mA peak}$					
Max. switch-on current $4 \text{ A for } \leq 1 \text{ s}$ Analogous to output U1output is short-circuit-proofOutput voltage $U_{out} = 0 \dots 10.0 \text{ V}$ Current rating $\pm 2 \text{ mA RMS}; \pm 2.7 \text{ mA peak}$ Ripple $\leq 50 \text{ mVpp}$					
Max. switch-on current $4 \text{ A for } \le 1 \text{ s}$ Analogous to output U1output is short-circuit-proofOutput voltage $U_{out} = 0 \dots 10.0 \text{ V}$ Current rating $\pm 2 \text{ mA RMS}; \pm 2.7 \text{ mA peak}$					

Interfaces, cable lengths	BSB	2-wire connection, not interchangeable
	Max. cable length	
	Basic unit – peripheral device	200 m
	Max. total length	400 m (max. cable capacitance) 60 nF)
	Min. cross-sectional area	0.5 mm ²
	LPB	(copper cable 1.5 mm ² , 2-wire not
		interchangeable)
	with bus power supply via controller (per	250 m
	controller)	460 m
	With central bus power supply	E = 3
	Bus loading number	
Degree of protection and	Degree of protection of housing to EN 60	IP 00
safety class	529	
	Safety class to EN 60 730	low-voltage-carrying parts meet the
		requirements of safety class II, if correctly
		installed
	Degree of pollution to EN 60 730	Normal pollution
Standards, safety, EMC,	CE conformity to	
etc.	EMC directive	89/336/EEC
	- Immunity	- EN 61000-6-2
	- Emissions	- EN 61000-6-3
	Low-voltage directive	73/23/EEC
	 Electrical safety 	- EN 60730-1, EN 60730-2-9
Climatic conditions	Storage to IEC721-3-1 class 1K3	temp2065 °C
	Transport to IEC721-3-2 class 2K3	temp2570°C
	Operation to IEC721-3-3 class 3K5	temp. 050 °C (non-condensing)
Weight	Without packaging	RVS43.143: 587 g
		RVS63.283: 648 g

Dower owneb.	6.2 EXTENSION MODULE A					
Power supply		AC 230 V (±10%)				
	Bemessungsfrequenz	50/60 Hz				
	Power consumption	4 VA				
	Fusing of supply lines	max. 10 AT				
Wiring of terminals	(Power supply and outputs)	solid wire or stranded wire (twisted or with ferrule):				
		1 core: 0.52.5 mm ²				
		2 cores 0.51.5 mm ²				
Functional data	Software class	Α				
	Mode of operation to EN 60 730	1b (automatic operation)				
Inputs	Digital inputs H2	safety extra low-voltage for potential-free low-voltage contacts: voltage with contact open: DC 12 V current with contact closed: DC 3 mA				
	Analog input H2	protective extra low-voltage operating range: DC (010) V internal resistance: > 100 kΩ				
	Mains input L	AC 230 V (±10 %)				
		internal resistance: > 100 k Ω				
	Sensor inputs BX6, BX7	NTC10k (QAZ36, QAD36)				
	Perm. sensor cables (copper)	NTCTOK(QAZSO,QADSO)				
	with cross-sectional area:	0.25 0.5 0.75 1.0 1.5 mm ²				
	Max. length:	20 40 60 80 120 m				
Outputs	Relay outputs					
Calpate	Rated current range	AC 0.022 (2) A				
	Max. switch-on current	15 A for ≤1 s				
	Max. total current (of all relays)	AC 6 A				
	Rated voltage range	AC (24230) V (for potential-free outputs)				
Interfaces	BSB	2-wire connection, not interchangeable				
	Max. cable length					
	Basic unit – peripheral device	200 m				
	Max. total length	400 m (max. cable capacitance) 60 nF)				
	Min. cross-sectional area	0.5 mm ²				
Degree of protection and safety class	Degree of protection of housing to EN 60 529	IP 00				
	Safety class to EN 60 730	low-voltage-carrying parts meet the requirements of safety class II, if correctly				
		installed				
	Degree of pollution to EN 60 730	Normal pollution				
Standards, safety, EMC,	CE conformity to					
etc.	EMC directive	89/336/EEC				
	- Immunity	- EN 61000-6-2				
	- Emissions	- EN 61000-6-3				
	Low-voltage directive	73/23/EEC				
	– Electrical safety	- EN 60730-1, EN 60730-2-9				
Climatic conditions	Storage to IEC721-3-1 class 1K3	temp2065 °C				
	Transport to IEC721-3-2 class 2K3	temp2570°C				
	Operation to IEC721-3-3 class 3K5	temp. 050 °C (non-condensing)				
Weight	Without packaging	293 g				

8.2 Extension module AVS75.390

190/196

Power supply	For devices without batteries:			
	Bus power supply	BSB		
	For devices with batteries:			
	Batteries	3 pcs		
	Type of batteries	1.5 V alkaline, size AA (LR06)		
	Battery life	approx. 1.5 years		
Room temperature	Measuring range	050 °C		
measurement (only with	According to EN12098:			
QAA7x) / QAA55)	Range 1525 °C	within tolerance of 0.8 K		
	range 015 °C or 2550 °C	within tolerance of 1.0 K		
	resolution	1/10 K		
Interfaces	AVS37/QAA75/QAA55	BSB-W,		
		2-wire connection, not interchangeable		
	Max. cable length basic unit – peripheral	QAA75/QAA55 = 200 m		
	device	AVS37 = 3 m		
	QAA78	BSB-RF		
		frequency band 868 MHz		
Degree of protection and	Degree of protection of housing to EN 60	IP20 for QAA7/ QAA55		
safety class	529	IP40 for AVS37 IP20 (when mounted)		
		Normal pollution		
	Safety class to EN 60 730	low-voltage-carrying parts meet the		
		requirements of safety class III, if correctly		
		installed		
	Degree of pollution to EN 60 730	Normal pollution		
Standards, safety, EMC,	CE conformity to			
etc.	EMC directive	89/336/EEC		
	- Immunity	- EN 61000-6-2		
	- Emissions	- EN 61000-6-3		
	Low-voltage directive	73/23/EEC		
	 Electrical safety 	- EN 60730-1, EN 50090-2-2		
	Radio	EN 300 220-1 (25-1000MHz)		
Climatic conditions	For devices without batteries:			
	Storage to IEC721-3-1 class 1K3	temperature -2065 °C		
	Transport to IEC721-3-2 class 2K3	temperature –2070 °C		
	Operation to IEC721-3-3 class 3K5	temperature 050 °C (non-condensing)		
	For devices with batteries:			
	Storage to IEC721-3-1 class 1K3	temperature -2030 °C		
	Transport to IEC721-3-2 class 2K3	temperature –2070 °C		
	Operation to IEC721-3-3 class 3K5	temperature 050 °C (non-condensing)		
Weight	Without packaging	AVS37.294: 160 g		
-		QAA75.61x: 170 g		

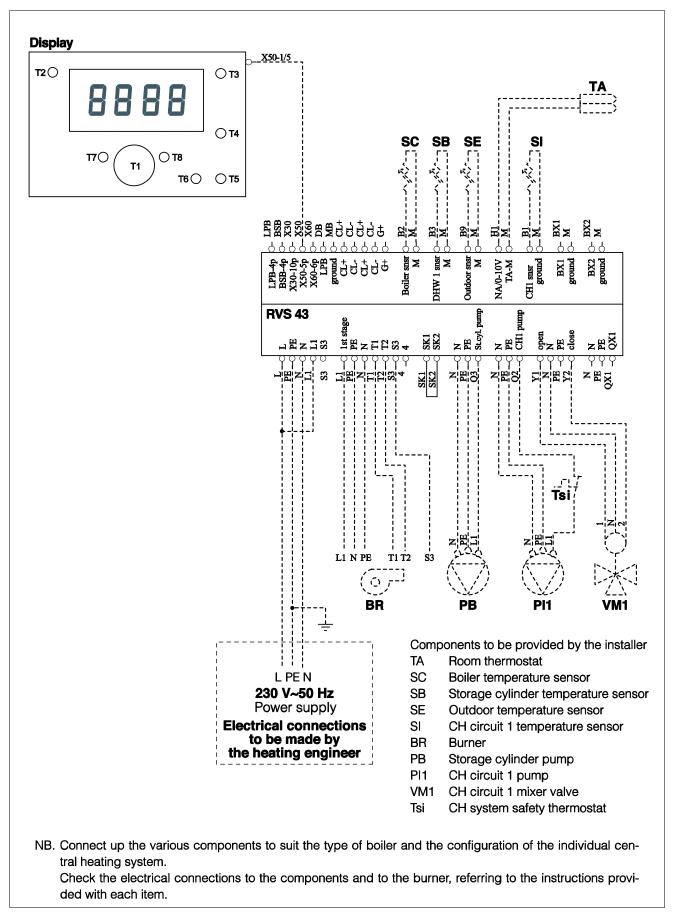
8.3 Operator unit and room units AVS37... /

QAA7x... / QAA55..

8.4 Sensor characteristics

8.4.1 NTC 1 k

T [°C]	R[Ohm]	T [°C]	R[Ohm]	T [°C]	R[Ohm]
-30.0	13,034	0.0	2,857	30.0	827
-29.0	12,324	1.0	2,730	31.0	796
-28.0	11,657	2.0	2,610	32.0	767
-27.0	11,031	3.0	2,496	33.0	740
-26.0	10,442	4.0	2,387	34.0	713
-25.0	9,889	5.0	2,284	35.0	687
-24.0	9,369	6.0	2,186	36.0	663
-23.0	8,880	7.0	2,093	37.0	640
-22.0	8,420	8.0	2,004	38.0	617
-21.0	7,986	9.0	1,920	39.0	595
-20.0	7,578	10.0	1,840	40.0	575
-19.0	7,193	11.0	1,763	41.0	555
-18.0	6,831	12.0	1,690	42.0	536
-17.0	6,489	13.0	1,621	43.0	517
-16.0	6,166	14.0	1,555	44.0	500
-15.0	5,861	15.0	1,492	45.0	483
-14.0	5,574	16.0	1,433	46.0	466
-13.0	5,303	17.0	1,375	47.0	451
-12.0	5,046	18.0	1,320	48.0	436
-11.0	4,804	19.0	1,268	49.0	421
-10.0	4,574	20.0	1,218	50.0	407
-9.0	4,358	21.0	1,170		
-8.0	4,152	22.0	1,125		
-7.0	3,958	23.0	1,081		
-6.0	3,774	24.0	1,040		
-5.0	3,600	25.0	1,000		
-4.0	3,435	26.0	962		
-3.0	3,279	27.0	926		
-2.0	3,131	28.0	892		
-1.0	2,990	29.0	859		


8.4.2 NTC 10 k

T [°C]	R[Ohm]	T [°C]	R[Ohm]	T [°C]	R[Ohm]
-30.0	175203	50.0	3605	130.0	298
-25.0	129289	55.0	2989	135.0	262
-20.0	96360	60.0	2490	140.0	232
-15.0	72502	65.0	2084	145.0	206
-10.0	55047	70.0	1753	150.0	183
-5.0	42158	75.0	1481	155.0	163
0.0	32555	80.0	1256	160.0	145
5.0	25339	85.0	1070	165.0	130
10.0	19873	90.0	915	170.0	117
15.0	15699	95.0	786	175.0	105
20.0	12488	100.0	677	180.0	95
25.0	10000	105.0	586	185.0	85
30.0	8059	110.0	508	190.0	77
35.0	6535	115.0	443	195.0	70
40.0	5330	120.0	387	200.0	64
45.0	4372	125.0	339		

8.4.3 PT1000

T [°C]	R[Ohm]	T [°C]	R[Ohm]	T [°C]	R[Ohm]
-30	882.2	50	1194.0	130	1498.3
-25	901.9	55	1213.2	135	1517.1
-20	921.6	60	1232.4	140	1535.8
-15	941.2	65	1251.6	145	1554.6
-10	960.9	70	1270.8	150	1573.3
-5	980.4	75	1289.9	155	1591.9
0	1000.0	80	1309.0	160	1610.5
5	1019.5	85	1328.0	165	1629.1
10	1039.0	90	1347.1	170	1647.7
15	1058.5	95	1366.1	175	1666.3
20	1077.9	100	1385.1	180	1684.8
25	1097.3	105	1404.0	185	1703.3
30	1116.7	110	1422.9	190	1721.7
35	1136.1	115	1441.8	195	1740.2
40	1155.4	120	1460.7	200	1758.6
45	1174.7	125	1479.5		

TYPICAL COMPONENT CONNECTION DIAGRAM FOR SYSTEM WITH **RVS 43...**

TYPICAL COMPONENT CONNECTION DIAGRAM FOR SYSTEM WITH **RVS 63...**

